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Abstract

A methodology to calculate the maximum allowed power for White
Space Devices (WSD) operating in the Digital Terrestrial Television
(DTT) frequency bands is defined in the recent regulatory statement
produced by the United Kingdom Office of Communication [1]. In
deriving the methodology, the usual procedure of dividing the DTT
service area into cells was considered. The maximum allowed transmit
power for all WSDs in a given cell was determined under the single en-
try assumption that the victim DTT receiver is being interfered only by
the WSDs in that cell. They have assumed that aggregate interference
would not be a problem in the short term.

To investigate the limits within which the aggregation of interfer-
ence from WSDs exceeds the regulatory threshold established by the
methodology in [1], a first study [2], in which the geographical loca-
tions of the WSDs are modeled as a two-dimensional Poisson Point
Process (PPP) was made. In the study, the statistical behaviour of
the aggregate interference (probability distribution function - PDF)
was obtained via Monte Carlo simulation.

This paper presents an alternative method to compute the aggre-
gate interference PDF, that is based on the analytical expression of
the joint probability density function of the distances of the k nearest
neighbours in a two dimensional PPP. Results are compared to those
obtained using Monte Carlo simulation.

Keywords: White Space Device, Aggregate Interference, Stochastic Ge-

ometry, Cognitive Radio.

1. Introduction

Since last decade, the cognitive radio has been proposed to be a sec-
ondary system in digital TV frequency band, in order to share free channels
(white spaces) and increase capacity to wireless communication services.
Such radios are usually known as white space devices (WSD) and they should
not cause harmful interference to digital TV primary services (DTT).
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In early 2015, the regulatory body of United Kingdom Office of Commu-
nication (Ofcom) published the first European regulation allowing for the
operation of WSDs in the DTT allocated bands with the support of a ge-
olocation database [1]. The criterion used for calculating the power limits
is based on a maximum allowable degradation, in terms of a defined quality
coverage parameter, that would guarantee that the DTT receivers will not
be subjected to harmful interference. The quality coverage parameter used
was the so called location probability. Some aspects of the methodology in
[1] for calculating the WSD maximum power emission limits are presented
in Section 2.

The Ofcom regulation [1] assumes that only one WSD radiates per pixel
and per channel. It recognizes, however, that a WSD database may provide
services to multiple WSDs in the same geographic area and the same DTT
channels, resulting in an aggregation of interference. Nevertheless, Ofcom
statement ”believes that such aggregation of interference is unlikely to be
problematic in the short term”. The paper [2] assessed the limits within
which the WSD aggregate interference power exceeds the regulatory thresh-
old specified in [1] via Monte Carlo simulation of a two-dimensional Poisson
Point Process (PPP).

In this paper, the statistical behaviour of the aggregate interference from
WSD transmitters into a DTT receiver is calculated using the joint probabil-
ity density function of the nearest neighbour distance in a two-dimensional
PPP. In Section 2, the Ofcom method to determine the maximum e.i.r.p.
(equivalent isotropically radiated power) allowed for the WSD transmis-
sions, which is based on sigle-entry interference, is briefly described and the
mathematical model used to determine the probability distribution function
(PDF) of the aggregate interference is derived. An alternative method to
compute the aggregate interference PDF, on the analytical expression of
the joint probability density function of the nearest neighbours distances is
presented in Section 3. Numerical results and conclusions are presented in
sections 4 and 5, respectively.

2. Aggregate Interference

According the methodology applied in [2], the aggregate interference
iiagg,j reaching Cell j, must satisfy the condition

P (iagg,j > Zj) ≤ 0.01 (1)

In each cell, the value Zj is determined so that its location probability
(a DTT coverage quality parameter) is not decreased by more than 7%



[1]. Once Zj is known for all cells in the DTT service area, it is possible
to determine, for each cell, the maximum value of e.i.r.p. that could be
transmitted by all WSDs in the cell without producing, at the neighbouring
cells, interference powers that do not satisfy (1). To do so, consider the
geometry illustrated in Figure 1 and let Ekj be the e.i.r.p. transmitted by a
WSD in Cell k in the direction of Cell j. The interfering power ikj reaching
a DTT receiver located at the center of Cell j is given by

ikj = Ekj + g(θj)− Lkj + ρ(∆f) (2)

where Lkj is the propagation loss experienced by the WSD transmission
from Cell k to Cell j (in dB), g(θj) is the DTT receiving antenna gain in
the direction of Cell k (in dBi) and ρ(∆f) represents the protection ratio
(in dB) required to protect the wanted signal from interference when the
interfering and the desired frequency channels are ∆f Hz apart.
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Figure 1 - Geometry for calculating Ekj

It is assumed that the propagation loss Lkj is given by the extended Hata
model [3] which considers that, when expressed as a factor, the propagation
loss has a lognormal distribution and, as a consequence, Lkj ∼ N(mkj , σkj)
has a gaussian distribution. The linear relation in (2) indicates that ikj is
also a gaussian random variable. As a consequence,

P (ikj > Zj) = Q

(
Zj−(Ekj + g(θj)−mkj + ρ(∆f))

σkj

)
(3)

with Q( ) denoting the Q-function. Note that requiring the probability in
(3) to be less than or equal to 0.01 is equivalent to require the argument of
the Q-function to be greater than or equal to 2.33. This means that Ekj
must satisfy the condition



Ekj ≤ Zj − g(θj) +mkj − ρ(∆f)− 2.33 σkj (4)

The maximum e.i.r.p. allowed for all WSDs in Cell k, considering all the
surrounding cell j, is then given by

Ek = min
j

(Zj − g(θj) +mkj − ρ(∆f)− 2.33 σkj) (5)

It is assumed that all WSDs in a given cell, say Cell k, operate with
e.i.r.p. equal to Ek.

To calculate the aggregate interference power reaching the DTT victim
receiver, consider the geometry in Figure 2 and let the inferfering power i`
due to a single `-th WSD, expressed in dBm, be written as

i` = P` − L` + g(θ`) + ρ(∆f) (6)

where P` denotes the e.i.r.p. transmitted by the interfering WSD (in dBm),
L` is the propagation loss experienced by the WSD transmission (in dB),
g(θ`) is the DTT receiving antenna gain in the direction of the `-th WSD (in
dBi) and ρ(∆f) is defined the same way as in (2). Again, the propagation
loss L` is given by the extended Hata model [3], being then modeled as a
gaussian random variable. This means that the interfering power i` is also
a gaussian random variable.
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Figure 2 - Multiple interfering WSDs

Assuming N interfering WSDs, the aggregate interference power reach-
ing the DTT receiver, expressed in dBm, is written as



iagg = 10 log

(
N∑
`=1

10i`/10

)
(7)

The expression between parentheses in (7) corresponds to a sum of statisti-
cally independent lognormal random variables. Determining the probability
density function of the sum of lognormal random variables is a complex
task. However, an approximation can be obtained by using the algorithm
presented in [4] and numerically improved in [5]. In this algorithm the
probability density function of the sum of lognormal random variables is ap-
proximated by a lognormal probability function. This means that, given the

geographical locations r = ( rT1 rT2 · · · rTN )
T

of all interfering WSDs
(with {r`, `=1, . . . , N} denoting the two-dimensional vector containing the
longitude and latitude of the geographical location of the `-th interfering
WSD) the algorithm in [4] provides the mean and standard deviation of
the aggregate interfering power, which has a normal (gaussian) distribution
when expressed in dBm. Thus,

iagg ∼ N(miagg |r=R, σiagg |r=R) (8)

The unconditional Probability Distribution Function (PDF) of the aggregate
interference power can be written as

Fiagg(I) = P (iagg≤I) =

∫
Ωr

P (iagg≤I|r = R) pr(R) dR (9)

with pr(R) denoting the probability density function of the WSDs geograph-
ical locations r. Considering (8), the conditional probability in (9) can be
written as

P (iagg≤I|r = R) = 1−Q

(
I −miagg |r=R

σiagg |r=R

)
(10)

In [2], the integral in (9) was determined via Monte Carlo simulation with
pr(R) modeled by a two-dimensional PPP.

3. Aggregate Interference Using Nearest Neighbours

An alternative way to obtain the aggregate interference probability dis-
tribution function would be by ordering the terms of the summation in (7)
in the decreasing order of their contributions to the aggregate interference
and consider only the first K terms. The value of K would be determined
so that the contribution of all other terms is negligible.



As a first step into this direction, this paper addresses the particular
case in which the DTT receiver antenna has an omnidirectional pattern
(g(θj) = G,∀ j) and the maximum e.i.r.p. allowed for all the WSDs in a cell
is the same for all cells (Ek = E,∀ k with E = mink(Ek)). In this particular
case, the interference contributions of the terms in (7) is directly related
to the distances between the considered WSD and the DTT victim receiver
and, as a consequence, the terms to be considered in (7) correspond to the
K WSDs nearest neighbours to the DTT receiver.

Let then rK = ( rT1 rT2 · · · rTK )
T

denote the vector containing the
geographical locations of the K nearest neighbours WSDs. The element rk
(k=1, . . . ,K) correspond a two-dimensional variable defining the geograph-
ical location of the k-th nearest neighbour WSD, which can be represented,
in polar coordinates, by the distance dk to the DTT receiver and the az-
imuth angle θk with respect to the DTT location. Thus, considering (9), we
can write

P (iagg≤I) =

∫
ΩdK

∫
ΩθK

P (iagg≤I|dK=D,θK=Θ) pdKθK (D,Θ) dD dΘ (11)

where dK = (d1 d2 · · · dK)T and θK = (θ1 θ2 · · · θK)T .
As in [2], the WSD locations are here modeled as a two-dimensional

homogeneous Poisson Point Process (PPP). In this case, the distances dk
and the azimuths θk are statistically independent random variables [6]. As
a consequence the random vectors dK and θK are statistically independent.
Then

P (iagg≤I) =

∫
ΩdK

∫
ΩθK

P (iagg≤I|dK=D,θK=Θ) pdK
(D) pθK (Θ) dD dΘ (12)

Again, given dK = D and θK = Θ, the aggregate interference probabil-
ity density function can be calculated using the algorithm in [4] [5] and, as
before,

iagg ∼ N(miagg |dK=D,θK=Θ, σiagg |dK=D,θK=Θ), (13)

implying that

P (iagg≤I|dK =D,θK =Θ) = 1−Q

(
I −miagg |dK=D,θK=Θ

σiagg |dK=D,θK=Θ

)
(14)



The independent scattering (or purely random) property of an homoge-
neous Poisson Point Process [6] guarantees that the angles {θk, k = 1, . . . ,K}
are statistically independent and uniformly distributed in the interval [0, 2π].
Then,

pθK (Θ) =

K∏
k=1

pθk(Θk) =

(
1

2π

)K
(15)

It is also known [7] that, for an homegeneous PPP, the joint probability
density function pdK

(D) of the distances of the K nearest neighbours is
given by

pdK
(D) =


exp (−λπD2

K) (2λπ)K
(∏K

k=1Dk

)
; D ∈ S

0 ; D /∈ S
(16)

where λ is the point density of the PPP and

S = {D ∈ RK : D1 < D2 < · · · < DK} (17)

Substituting (15) and (16) in equation (12)

P (iagg≤I) = λK
∫ ∞

0

∫ ∞

D1

· · ·
∫ ∞

DK−1

∫ 2π

0
· · ·
∫ 2π

0
P (iagg≤I|dK=D,θK=Θ)

dΘ1 · · · dΘK exp (−λπD2
K)

(
K∏
k=1

Dk

)
dDK · · · dD1

(18)

Note that, under the conditions assumed in this section (g(θj) = G,∀ j
and Ek = E,∀ k), the probability distribution function in (18) should ap-
proach the one in (9), as K increases. It is also important to observe that,
while (9) is calculated via Monte Carlo simulation (in this case the reliabil-
ity of the results depends on the number of simulation runs), (18) can be
calculated using numerical integration (precision depends on discretization
of the integration region).



4. Numerical Results

A comparison between the Nearest Neighbours method (NN) presented
in Section 3 and the Monte Carlo simulation (MC) was done using a par-
ticular scenario in which three co-located DTT transmitters (operating in
channels 24, 27 and 29 of the digital TV frequency band) provide services
to users in a service area where a WSD system operates in the adjacent
channel 26. The DTT receiving power in each cell, necessary to determine
Zj , was calculated using Recommendation ITU-R P.1546.

The victim DTT was assumed to be 35 km distant from the DTT trans-
mitters. The maximum allowed e.i.r.p. for each cell in this sub-region was
determined, using (5). The DTT victim receiver antenna follows an omni-
directional pattern with 3 dBi of gain and the adjacent channel protection
ratio was determined according to ”low” Class 1 type of WSD [8]. The ex-
tended Hata model was used to calculate the propagation loss assuming an
urban clutter type. Antenna heights of 10 m and 30 m were considered for
the victim DTT and interfering WSDs respectively.

The MC simulation, involving 1000 PPP samples, was used to calcu-
late the WSDs aggregate interference PDF using (9). The WSDs aggregate
interference PDF was also determined with the NN method using (18). Dif-
ferent values of K (number of nearest neighbours taken into account) were
considered.

A first example evaluates the aggregate interference produced by multi-
ple WSDs into DTT channel 27 with a density λ = 0.1 WSD/km2. Results
are presented in Figure 3. The curves in dash-dot red lines refer to NN
method and the curve in blue solid line refers to MC simulation. Note that,
as expected, the NN curves come closer to the MC curve as the value of K
increases.

Another example involving a higher density of WSDs was also consid-
ered (λ = 0.215 WSD/km2). The resulting curves are presented in Figure
4. Note that, in both examples (λ in the range 0.1 to 0.215 WSD/ km2),
the NN method with K = 5 (interference due to the first 5 nearest neigh-
bours) provides results that can be considered a good approximation for the
MC curve (differences < 2 dB). For larger values of λ, a larger number of
nearest neighbours would be necessary in the NN method to approach the
MC results. Also note that, as expected, the curves in Figure 4 are shifted
approximately 3.3 dB (10 log(0.215/0.1)) to the right, with respect to those
in Figure 3.
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Figure 3 WSD aggregate interference PDF affecting channel 27 with λ =
0.1 using MC simulation and NN method.
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Figure 4 WSD aggregate interference PDF affecting channel 27 with λ =
0.215 using MC simulation and NN method.



5. Conclusion

This paper has developed a Nearest Neighbours mathematical model
to assess the statistical behaviour of the interference produced by multi-
ple WSDs into a DTT receiver. It calculates the aggregate interference
PDF based on the joint probability density function (PdF) of the K nearest
neighbour distances in a two dimensional homogeneous PPP. It takes ad-
vantage of the analytical expression available in the literature for this joint
PdF to produce an integral closed-form expression for the aggregate interfer-
ence PDF. Numerical examples allowed for a first comparison of the results
produced by the proposed model with those obtained via a Monte Carlo
simulation, demonstrating the feasibility of the new method. The next step
would be to generalize the idea behind the proposed method to produce a
model applicable to situations involving directional DTT receiver antennas.
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