Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:
SOLGRAF Editora
solgraf@gmail.com






95/105= 0.91


1,1

Ordered structures and phase transitions in a phase field crystal model for adsorbed layers

doi: 10.6062/jcis.2009.01.02.0010(Free PDF)

Authors

Jorge A. P. Ramos, Enzo Granato, Cristian V. Achim, See Chen Ying, Ken R. Elder and Tapio Ala-Nissila

Abstract

We study numerically the phase diagram of a phase field crystal model for adsorbed layers. This model, introduced recently, is a continuous field crystal lattice in presence of an external pinning potential. The model allows for both elastic and plastic deformations of the layer on atomic and diffusive time scales. Monte Carlo simulations are used to determine the phase diagram as a function of temperature, lattice mismatch and substrate pinning potential. The results show a rich phase diagram with commensurate, incommensurate and liquid-like phases with a topology strongly dependent on the type of ordered structure.

Keywords

Adsorbed layers, commensurate-incommensurate transitions, strained epitaxial layers, numerical simulation.

References

[1] PATRYKIEJEW A & SOKOLOWSKI S. 2007. Phys. Rev. Lett., 99: 156101. PATRYKIEJEW A, SOKOLOWSKI S & BINDER K. 2000. Surf. Sci. Rep., 37: 207. PERSSON B. 1992. ibid. , 15: 1. 10.1103/PhysRevLett.99.156101

[2] HUPALO M, SCHMALIAN J & TRINGIDES MC. 2003. Phys. Rev. Lett., 90: 216106. 10.1103/PhysRevLett.90.216106

[3] LU Y, PRZYBYLSKI M, TUSHIN O, WANG WH, BARTHEL J, GRANATO E, YING SC & ALA-NISSILA T. 2005. Phys. Rev. Lett., 94: 146105.

[4] ACHIM CV, KARTTUNEN M, ELDER KR, GRANATO E, ALA-NISSILA T & YING SC. 2006. Phys. Rev. E, 74: 021104. 10.1103/PhysRevE.74.021104

[5] ELDER KR, KATAKOWSKI M, HAATAJA M & GRANT M. 2002. Phys. Rev. Lett., 88: 245701. 10.1103/PhysRevLett.88.245701

[6] ELDER KR & GRANT M. 2004. Phys. Rev. E, 70: 051605. doi:10.1103/PhysRevE.70.051605

[7] ELDER KR, PROVATAS N, BERRY J, STEFANOVIC P & GRANT M. 2007. Phys. Rev. B, 75: 064107. 10.1103/PhysRevB.75.064107

[8] HALDANE FDM, BAK P & BOHR T. 1983. Phys. Rev. B, 28: 2743. 10.1103/PhysRevB.28.2743

[9] RAMOS JAP, GRANATO E, ACHIM CV, YING SC, ELDER KR & ALANISSILA T. 2008. Phys. Rev. E, 78: 031109. 10.1103/PhysRevE.78.031109

Search










Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertisers/Sponsors
Advertises Media Information