Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:
SOLGRAF Editora
solgraf@gmail.com






95/105= 0.91


1,1

Ratchetlike pulse controlling the Fermi deceleration and hyperacceleration

doi: 10.6062/jcis.2009.01.02.0011(Free PDF)

Authors

Cesar Manchein and Marcus W. Beims

Abstract

Using an ac driven asymmetric pulse we show how the Fermi acceleration (deceleration) can be controlled. A deformed sawtooth (Ratchetlike) pulse representing the moving wall in the static Fermi-Ulam model is considered. The time integral from the pulse over one period of oscillation must be negative to obtain deceleration and positive to obtain hyperacceleration. We show that while the decelerated case is chaotic, for the hyperaccelerated case the Lyapunov exponents converge to zero. Numerical simulations indicate that the hyperaccelerated case is ergodic in velocity space. Switching between different pulse deformations we are able to control the particle acceleration. Results should be valid for any pulse for which the time integral can be manipulated between positive and negative values.

Keywords

Fermi acceleration, control, Ratchet.

References

[1] FERMI E. 1949. Phys. Rev., 75: 1169.

[2] ULAM SM. 1961. University of California Press, Berkely, vol. 3.

[3] LIEBERMAN MA & LICHTENBERG AJ. 1972. Phys. Rev. A, 5: 1852. 10.1103/PhysRevA.5.1852

[4] LICHTENBERG AJ & LIEBERMAN MA. 1992. Regular and Chaotic Dynamics, Springer-Verlag.

[5] LEONEL ED, DA SILVA JKL & KAMPHORST SO. 2004. Physica A, 331: 435. 10.1016/j.physa.2003.09.027

[6] LEONEL ED, McCLINTOCK PVE & DA SILVA JKL. 2004. Phys. Rev. Lett., 93: 014101. 10.1103/PhysRevLett.93.014101

[7] LEONEL ED & McCLINTOCK PVE. 2005. J. Phys. A, 38: 823. 10.1088/0305-4470/38/4/004

[8] DE CARVALHO RE, SOUZA FC & LEONEL ED. 2006. Phys. Rev. E, 73: 066229. 10.1103/PhysRevE.73.066229

[9] KARLIS AK, PAPACHRISTOU PK, DIAKONOS FK, CONSTANTOUDISV & SCHMELCHER P. 2006. Phys. Rev. Lett., 97: 194102. 10.1103/PhysRevLett.97.194102

[10] KARLIS AK, PAPACHRISTOU PK, DIAKONOS FK, CONSTANTOUDIS V & SCHMELCHER P. 2007. Phys. Rev. E, 76: 016214. 10.1103/PhysRevE.76.016214

[11] PUSTYLNIKOV LD. 1978. Trudy Moskov. Mat. Obsc. Tom 34, 1(Trans. Moscow. Math. Soc., 2, 1 (1978)).

[12] STEANE A, SZRIFTGISER P, DESBIOLLES P & DALIBARD J. 1995. Phys. Rev. Lett., 74: 4972. 10.1103/PhysRevLett.74.4972

[13] SAIF F, BIALYNICKI-BIRULA I, FORTUNATO M & SCHLEICH WP. 1998. Phys. Rev. A, 58: 4779. 10.1103/PhysRevA.58.4779

[14] SAIF F. 2005. Phys. Rep., 419: 207. 10.1016/j.physrep.2005.07.002

[15] MILOVANOV AV & ZELENY LM. 2001. Phys. Rev. E 64: 052101. 10.1103/PhysRevE.64.052101

[16] MICHALEK G, OSTROWSKI M & SCHICKEISER R. 2001. Sol. Phys., 184: 339.

[17] VELTRI A & CARBONE V. 2004. Phys. Rev. Lett., 92: 143901. 10.1103/PhysRevLett.92.143901

[18] KOBAYAKAWA K, HONDA YS & TAMURA T. 2002. Phys. Rev. D, 66: 083004. 10.1103/PhysRevD.66.083004

[19] MALKOV MA. 1998. Phys. Rev. E, 58: 4911. 10.1103/PhysRevE.58.4911

[20] COLE D, BENDING S, SAVELLEV S, GRIGORENKO A, TAMEGAI T & NORI F. 2006. Nature Materials, 5: 305.

[21] ANGELANI L, LEONARDO RD & RUOCCO G. 2009. Phys. Rev. Lett., 102: 048104. 10.1103/PhysRevLett.102.048104

[22] ZASLAVSKI GM. 2002. Phys. Rep., 371: 461.

[23] BEIMS MW, MANCHEIN C & ROST JM. 2007. Phys. Rev. E, 76: 056203. 10.1103/PhysRevE.76.056203

[24] MANCHEIN C & BEIMS MW. 2007. Chaos Solitons & Fractals, doi:101016/j.chaos.2007.06.112. 101016/j.chaos.2007.06.112.

[25] MANCHEIN C, BEIMS MW & ROST JM. 2009. (submitted).

[26] SZEZECH JD, LOPES SR & VIANA RL. 2005. Phys. Lett. A, 335: 394. 10.1016/j.physleta.2004.12.058

[27] BENETTIN G, GALGANI L, GIORGILLI A & STRELCYN J-M. 1980. Meccanica, 15: 09.

[28] CASATI G & FORD J. 1976. J. Comp. Phys., 20: 97. 10.1016/0021-9991(76)90104-2

[29] MANCHEIN C & BEIMS MW. 2009. (in preparation).

Search










Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertisers/Sponsors
Advertises Media Information