Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:
SOLGRAF Editora
solgraf@gmail.com






95/105= 0.91


1,1

A new numerical code for the Bondi problem

doi: 10.6062/jcis.2009.01.02.002(Free PDF)

Authors

Henrique P. de Oliveira and E. L. Rodrigues

Abstract

We present the first numerical code based on the Galerkin method to integrate the field equations of the Bondi problem. The Galerkin method is a spectral method whose main feature is to provide high accuracy with moderate computational effort. Several numerical tests were performed to verify the issues of convergence, stability and accuracy with promising results. This code opens up several possibilities of applications in more general scenarios for studying the evolution of spacetimes with gravitational waves.

Keywords

Numerical Relativity, Galerkin method, gravitational radiation.

References

[1] EINSTEIN A. 1916. Die Grundlage der allgemeinen Relativitatstheorie š (The foundation of General Relativity). Annalen der Physik 49.

[2] BONDI H. 1960. Gravitational waves in general relativity. Nature, 186: 535. 10.1038/186535a0

[3] BONDI H, VAN DER BURG MGJ & METZNER AWK. 1962. Proc. R. Soc. London, A, 269: 21. 10.1098/rspa.1962.0161

[4] WINICOUR J. 2005. Characteristic Evolution and Matching. Living Rev. Relativity, 8: 10.

[5] YORK JW. 1979. Kinematics and dynamics of general relativity, in L.L. Smarr, ed., Sources of gravitational radiation. Proceedings of the Battelle Seattle Workshop, 1978, 83–126. (Cambridge University Press).

[6] ISAACSON RA, WELLING JS & WINICOUR J. 1983. J. Math. Phys., 24(7): 1824.

[7] GOMEZ R, PAPADOPOULOS P & WINICOUR J. 1994. J. Math. Phys., Ž 35(8): 4184. 10.1063/1.530848

[8] STEWART JM. 1989. Proc. R. Soc. London, Ser. A, 424: 211. 10.1098/rspa.1989.0076

[9] d'INVERNO RA & VICKERS JA. 1997. Phys. Rev. D, 54(8): 4919 (1996). Phys. Rev. D, 56(2): 772.

[10] GOTTLIEB D & ORSZAG SA. 1995. Numerical Analysis of Spectral Methods: Theory and Applications (Society for Industrial and Applied Mathematics, Philadelphia, U.S.A. 1977); C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics (SpringerVerlag, Berlin, Germany; Heidelberg, Germant, 1988); Spectral Methods: Fundamentals in Single Domains (Springer-Verlag, Berlin, Germany; Heidelberg, Germant, 2006); Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Springer-Verlag, Berlin, Germany; Heidelberg, Germant, 2007); B. Fronberg, Pratical Guide to Pseudospectral Methods, Cambridge University Press (Cambridge, U.K.).

[11] BOYD J. 2001. Chebyshev and Fourier spectral methods, 2 nd ed. (Dover, New York).

[12] BONAZZOLA S, GOURGOULHON E & MARK JA. 1999. Spectral Methods in General Relativistic Astrophysics. J. Comp. and Applied Math., 109: 433 (1999); P. Grandclement and J. Novak, Spectral Methods Ž for Numerical Relativity, arXiv:0706.2286v1 [gr-qc], and all references therein.

[13] HOLMES P, LUMLEY JL & BERKOOZ G. 1998. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press (Cambridge).

[14] SIEBEL F. 2002. Simulation of axisymmetric flows in the characteristic formulation of general relativity. Ph.D. Thesis, (Technische Universitatš Munchen, M š unchen, Germany). š

[15] GOMEZ R, BARRETO W & FRITTELLI S. 2007. A framework for Ž large-scale relativistic simulations in the characteristic approach, gr-qc 0711.0564.

[16] GOMEZ R, REILLY P & WINICOUR J. 1993. Phys. Rev. D, 47: 3292. Ž 10.1103/PhysRevD.47.3292

[17] OLIVEIRA HP, RODRIGUES EL, SOARES ID & TONINI EV. 2007. Int. J. Mod. Phys. C, 18(12): 1839 (preprint gr-qc/0703007).

Search










Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertisers/Sponsors
Advertises Media Information