Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:
SOLGRAF Editora
solgraf@gmail.com






95/105= 0.91


1,1

The VLADA white paper: building an active Virtual Lab for Advanced Data Analysis

doi: 10.6062/jcis.2011.02.01.0031(Free PDF)

Authors

Murilo da S. Dantas, Reinaldo R. Rosa, Nilson Sant'Anna, Moacyr G. Cereja Jr, Thalita B. Veronese, Silvia Bianchi, Julia C. Rosa, Kiril M. Alexiev and Jose D.S. da Silva

Abstract

This technical white paper describes the design and initial implementation of a virtual environment for straightforward and robust data analysis intended for students and researchers acting in science and technology. The Virtual Laboratory for Advanced Data Analysis (VLADA) aims to fill a growing demand for scientific mathematical and statistical tools validated and coupled with appropriate high performance computing infrastructure into a single computing environment available on the Web using advanced parallel processing and object-oriented programming. This work proposes to provide: (i) a detailed study on the feasibility of building a such virtual environment with large international access, and (ii) a description of a preliminary single prototype including a standard method for advanced time series analysis. The main steps taken to develop such a laboratory, including preliminary software engineering implementation, are shown in this paper.

Keywords

Computational data analysis, virtual systems, advanced parallel processing, object-oriented programming, software engineering.

References

[1] BAINBRIDGE WS. 2007. The Scientific Research Potential of Virtual Worlds. Science 317(5837): 472-476. DOI: 10.1126/ science.1146930.

[2] PENG CK, BULDYREV S, GOLDBERGER A, HAVLIN S, SCIORTINO F, SIMONS M & STANLEY HE. 1992. Long-range correlations in nucleotide sequences. Nature, 356: 168.

[3] HU K, IVANOV PC, CHEN Z, CARPENA P & STANLEY HG. 2001. Effect of trends on detrended fluctuation analysis. Phys. Rev. E, 64: 011114.

[4] BARONI MPMA, DE WIT A & ROSA RR. 2010. Detrended fluctuation analysis of numerical density and viscous fingering patterns. EPL 92, 64002. DOI: 10.1209/0295-5075/92/64002.

[5] VERONESE TB, ROSA RR, BOLZAN MJA, FERNANDESC FCR, SAWANT HS & KARLICKY M. 2011. Fluctuation analysis of solar radio bursts associated with geoeffective X-class flares. Journal of Atmospheric and Solar-Terrestrial Physics, in press. doi:10.1016/j.jastp.2010.09.030.

[6] BUNDE A et al. Phys. Rev. E, 85: 3736.

[7] BULDYREV SV, GOLDBERGER AL, HAVLIN S, MANTEGNA RN, MATSA CK & PENG C-K et al. 1995. Phys. Rev. E, 51: 5084.

[8] BAI MY & ZHU HB. 2010. Physica A, 389: 1883.

[9] PENG C-K, BULDYREV SV, HAVLIN S, SIMONS M, STANLEY HE & GOLDBERGER AL. 1994. Phys. Rev. E, 49: 1685.

[10] MUZY JF, BACRY E & ARNEODO A. 1991. Wavelets and Multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett., 67(25): 3515-3518.

[11] MALLAT SG & HWANG WL. 1992. Singularity Detection and Processing with Wavelets. IEEE Trans. on Information Theory, 38: 617-643.

[12] BOLZAN MJA, ROSA RR & SAHAI Y. 2009. Multifractal analysis of low-latitude geomagnetic fluctuations. Annales Geophysicae, 27: 569-576.

[13] ROSA RR, SHARMA AS & VALDIVIA JA. 1999. Characterization of asymmetric fragmentation patterns in spatially extended systems. Int. J. Mod. Phys. C, 10: 147-163.

[14] ROSA RR, KARLICKY M, VERONESE TB, VIJAYKUMAR NL, SAWANT HS, BORGAZZI AI, DANTAS MS, BARBOSA EBM, SYCH RA & MENDES O. 2008. Gradient pattern analysis of short solar radio bursts. Adv. Space Res., 42(5): 844-851.

[15] DANTAS MS. 2010. Analise Espectral de Padr Ž oes-Gradiente de ˜ Series Temporais Curtas, (INPE-15676-TDI/1450). Dissertation Ž (MSc in Applied Computing) - National Institute for Space Research, Sao Jos ˜ e dos Campos, 2009. Available at: Ž . Acessed: 20 MAR. 2010.

[16] FUJIMOTO Y & IOKIBE T. 1999. Measurement of determinism in time series by chaotic approach and its applications. Int. J. of Advanced Computational Intelligence, 3(1): 50-55.

[17] FUJIMOTO Y & IOKIBE T. 2000. Evaluation of deterministic property of time series by the method of surrogate data and the trajectory parallel measure method. IEICE Trans. Fundamentals, vol. E83-A, No 2: 343-349.

Search










Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertisers/Sponsors
Advertises Media Information