Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:
SOLGRAF Editora
solgraf@gmail.com






95/105= 0.91


1,1

Computational methods to study Ca2+-triggered secretion at the cellular level

doi: 10.6062/jcis.2012.03.01.0048(Free PDF)

Authors

Gonzáles-Vélez V., Gil A., and Dupont G.

Abstract

Secretion is a widespread and fundamental physiological process that is tightly controlled by intracellular Ca^{2+} . Here, we present computational methods to study the functional dynamics of cellular secretion. We propose two computational schemes in order to reproduce the Ca^{2+} dynamics and exocytosis associated to different spatiotemporal scales: a microscopic scheme, suitable for fast spatiotemporal processes and a whole-cell scheme, suitable for slower (larger) scales. Some results showing the dynamic behaviour of two specific cell types are included in order to show the interest of a computational approach to gain insight about the molecular aspects of secretion, as well as to make theoretical predictions.

Keywords

calcium dynamics, stochastic methods, deterministic methods.

References

[1] ALBILLOS A, GIL A, GONZALEZ-VELEZ V, PEREZ-ALVAREZ A, SEGURA J, HERNANDEZ-VIVANCO A & CABA-GONZALEZ JC. 2012. Exocytotic dynamics in human chromaffin cells: experiments and modeling. J. Comput. Neurosci., (In press).

[2] ANDERSSON SA, PEDERSEN MG, VIKMAN J & ELIASSON L. 2011. Glucose-dependent docking and SNARE protein-mediated exocytosis in mouse pancreatic alpha-cell. Pflugers Arch. Eur. J. Physiol., 462: 443–454.

[3] AUGUSTINE GJ, SANTAMARIA F & TANAKA K. 2003. Local calcium signaling in neurones. Neuron., 40: 331–346.

[4] BENNETT MR. 1999. The concept of a calcium sensor in transmitter release. Prog. Neurobiol., 59: 243–277.

[5] BENNETT MR, FARNELL L & GIBSON WG. 2004. The facilitated probability of quantal secretion within an array of calcium chan- nels of an active zone at the amphibian neuromuscular junction. Biophys J, 86: 2674–2690.

[6] BERTS A, BALL A, GYLFE E & HELLMAN B. 1996. Suppresion of Ca2+ oscillations in glucagon-producing α2 -cells by insulin/glucose and amino acids. Biochimica et Biophysica Acta, 1310: 212–216.

[7] BODE HP, WEBER S, FEHMANN H-C & GOKE B. 1999. A nutrient-regulated cytosolic calcium oscillator in endocrine pancreatic glucagon-secreting cells. Pflugers Arch-Eur. J. Physiol., 437:324–334.

[8] BOLLMANN JH, SAKMANN B & BORST JGG. 2000. Calcium sensitivity of glutamate release in a calyx-type terminal. Science, 289: 953–957.

[9] BURGOYNE RD & MORGAN A. 2003. Secretory granule exocytosis. Physiol. Rev., 83: 581–632.

[10] CHEN Y, WANG S & SHERMAN A. 2008. Identifying the targets of the amplifying pathway for insulin secretion in pancreatic β-cells by kinetic modeling of granule exocytosis. Biophys. J., 95: 2226–2241.

[11] DOLMETSCH R, XU K & LEWIS R. 1998. Calcium oscillations increase the efficiency and specificity of gene expression. Nature, 392: 933–936.

[12] DOUGLAS WW. 1968. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br. J. Pharmacol., 34: 453–474.

[13] DUPONT G, HOUART G & DE KONINCK P. 2003. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model. Cell Calcium, 34: 485–497.

[14] DUPONT G, SWILLENS S, CLAIR C, TORDJMANN T & COMBETTES L. 2000. Hierarchical organization of calcium signals in hepatocytes: from experiments to models. Biochim Biophys Acta,1498: 134–152.

[15] FEDRIZZI L, LIM D & CARAFOLI E. 2008. Calcium and signal transduction. Biochem. Mol. Biol. Edu. (BAMBED), 36(3): 175–180.

[16] FRIDLYAND LE, TAMARINA N & PHILIPSON LH. 2003. Modeling of Ca2+ flux in pancreatic β-cells: role of the plasma membrane and intracellular stores. Am. J. Physiol. Endocrinol. Metab., 285:E138–E154.

[17] GIL A & GONZALEZ-VELEZ V. 2010. Exocytotic dynamics and calcium cooperativity effects in the calyx of held synapse: a modelling study. J. Comput. Neurosci., 28: 65–76.

[18] GIL A & SEGURA J. 2001. Ca3D: a Monte Carlo code to simulate3D buffered calcium diffusion of ions in sub-membrane domains.Comput. Phys. Commun., 136: 269–293.

[19] GIL A, SEGURA J, PERTUSA JAG & SORIA B. 2000. Monte Carlo simulation of 3-D buffered Ca2+ diffusion in neuroendocrine cells. Biophys. J., 78(1): 13–33.

[20] GONZALEZ-VELEZ V, DUPONT G, GIL A & QUESADA I. 2012. Model for glucagon secretion by pancreatic alpha-cells. PLoS ONE, 7(3): e32282.

[21] GONZALEZ-VELEZ V, GIL A & QUESADA I. 2010. Minimal state models for ionic channels involved in glucagon secretion. Math. Biosci. Eng., 7: 793–807.

[22] GONZALEZ-VELEZ V & GODINEZ-FERNANDEZ JR. 2004. Simulation of five intracellular Ca^{2+}-regulation mechanisms in response to voltage-clamp pulses. Comp. Biol. Med., 34(4): 279–292.

[23] GUSTAVSSON N, WEI S-H, HOANG DN, LAO Y, ZHANG Q, RADDA GK, RORSMAN P, SUDHOF TC & HAN W. 2009. Synaptotagmin-7 is a principal Ca^{2+} sensor for Ca^{2+}-induced glucagon exocytosis in pancreas. J. Physiol., 587: 1169–1178.

[24] HEINEMANN C, CHOW RH, NEHER E & ZUCKER RS. 1994. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+ . Biophys. J., 67: 2546–2557.

[25] HENQUIN JC, JONAS JC & GILON P. 1998. Functional significance of Ca^{2+} oscillations in pancreatic beta cells. Diabetes Metab., 24: 30–36.

[26] JUHASZOVA M, CHURCH P, BLAUSTEIN MP & STANLEY EF. 2000. Location of calcium transporters at presynaptic terminals. Eur. J. Neurosci., 12: 839–846.

[27] KRSMANOVIC L, MARTINEZ-FUENTES A, ARORA K, MORES N TOMIC M, STOJILKOVIC S & CATT K. 2000. Local regulation of gonadotroph function by pituitary gonadotropin-releasing hormone. Neuroendocrinology, 141: 1187–1195.

[28] MANSVELDER HD & KITS KS. 2000. Calcium channels and the release of large dense core vesicles from neuroendocrine cells: spatial organization and functional coupling. Prog. Neurobiol., 62:427–441.

[29] MARENGO FD & MONCK JR. Development and dissipation of Ca2+ gradients in adrenal chromaffin cells. Biophys. J., 79: 1800–1820.

[30] MATVEEV V, ZUCKER RS & SHERMAN A. 2004. Facilitation through buffer saturation: Constraints on endogenous buffering properties. Biophys. J., 86: 2691–2709.

[31] MEINRENKEN CJ, BORST JGG & SAKMANN B. 2002. Calcium secretion coupling at calyx of Held goverened by nonuniform channel-vesicle topography. J. Neurosci., 22: 1648–1667.

[32] MEINRENKEN CJ, BORST JGG & SAKMANN B. 2003. Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J. Physiol., 547:665–689.

[33] MEIR A et al. 1999. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev, 79(3): 1019–1088. [34] MORARU II & LOEW LM. 2005. Intracellular signaling: Spatial and temporal control. Physiology, 20: 169–179.

[35] NEHER E. 2006. A comparison between exocytotic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse. Pflug Arch-Eur. J. Physiol., 453: 261–268.

[36] OHEIM M, KIRCHHOFF F & STUHMER W. 2006. Calcium microdomains in regulated exocytosis. Cell Calcium, 40: 423–439.

[37] PALK L, SNEYD J, PATTERSON K, SHUTTLEWORTH T, YULE D, MacLAREN O & CRAMPIN E. 2012. Modelling the effects of calcium waves and oscillations on saliva secretion. J. Theor. Biol.,305: 45–53.

[38] QUESADA I, TODOROVA MG, ALONSO-MAGDALENA P, BELTRA M, CARNEIRO EM, MARTIN F, NADAL A & SORIA B. 2006. Glucose induces opposite intracellular ca concentration oscillatory patterns in identified α- and β-cells within intact human islets of langerhans. Diabetes, 55: 2463–2469.

[39] QUESADA I, TUDURI E, RIPOLL C & NADAL A. 2008. Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. J. Endocrin., 199: 5–19.

[40] QUESADA I, VILLALOBOS C, NUNEZ L, CHAMERO P, ALONSO MT, NADAL A & GARCIA-SANCHO J. 2008. Glucose induces synchronous mitochondrial calcium oscillations in intact pancreatic islets. Cell Calcium, 43: 39–47.

[41] QUOIX N, CHENG-XUE R, MATTART L, ZEINOUN Z, GUIOT Y, BEAUVOIS MC, HENQUIN J-C & GILON P. 2009. Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+ ]c by different mechanisms in isolated mouse α-cells. Diabetes, 58(2): 412–421.

[42] QUTUB AA, GABHANN F MAC, KARAGIANNIS ED, VEMPATI P & POPEL AS. 2009. Multiscale models of angiogenesis. IEEE Eng. Med. Biol., 28:14–31.

[43] RIZZUTO R & POZZAN T. 2006. Microdomains of intracellular Ca2+ : Molecular determinants and functional consequences. Physiol. rev., 86: 369–408.

[44] SATZLER K et al. 2002. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci., 22: 10567–10579.

[45] SCHMID A, HALLERMANN S, KITTEL RJ, KHORRAMSHAHI O, FROLICH AMJ, QUENTIN C, RASSE TM, MERTEL S, HECKMANN M & SIGRIST SJ. 2008. Activity-dependent site-specific changes of glutamate receptor composition in vivo . Nature Neurosci., 11: 659–666.

[46] SCHNEGGENBURGER R & FORSYTHE ID. 2006. The calyx of Held. Cell Tissue Res., 326: 311–337.

[47] SEGURA J, GIL A & SORIA B. 2000. Modeling study of exocytosis in neuroendocrine cells: Influence of the geometrical parameters. Biophys. J., 79: 1771–1786.

[48] SHITARA A, TANIMURA A & TOJYO Y. 2009. Spontaneous Ca2+ oscillations via purinergic receptors elicit transient cell swelling in rat parotid ducts. J. Med. Invest., 56: 377–380.

[49] SUDHOF TC. 2002. Synaptotagmins: Why so many? J. Biol. Chem., 277: 7629–7632.

[50] TASCHENBERGER H, LEAO RM, ROWLAND KC, SPIROU GA & VON GERSDORFF H. 2002. Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron., 36: 1127–1143.

[51] THORN P, LAWRIE A, SMITH P, GALLACHER D & PETERSEN O. 1993. Ca2+ oscillations in pancreatic acinar cells: spatiotemporal relationships and functional implications. Cell Calcium, 14: 746–757

[52] TSE A, TSE FW & HILLE B. 1994. Calcium homeostasis in identified rat gonadotrophs. J. Physiol., 477: 511–525.

[53] TUDURÍ E, MARROQUÍ L, SORIANO S, ROPERO AB, BATISTA TM, PIQUER S, LOPEZ-BOADO MA, CARNEIRO EM, GOMIS R, NADAL A & QUESADA I. 2009. Inhibitory effects of leptin on pancreatic α-cell function. Diabetes, 58: 1–9.

[54] VILLANUEVA J, TORREGROSA-HETLAND CJ, GIL A, GONZALEZ-VELEZ V, SEGURA J, VINIEGRA S & GUTIERREZ LM. 2010. The organization of the secretory machinery in neuroendocrine chromaffin cells as a major factor to model exocytosis. HFSP Journal, 4(2): 85–92.

[55] VOETS T. 2000. Dissection of three Ca2+ -dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron., 29: 537–545.

[55] VOETS T. 2000. Dissection of three Ca2+ -dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron., 29: 537–545.

[56] WANG L-Y, NEHER E & TASCHENBERGER H. 2008. Synaptic vesicles in mature calyx of Held synapses sense higher nano domain calcium concentrations during action potential-evoked glutamate release. J. Neurosci., 28(53): 14450–14458.

[57] WEIS S, SCHNEGGENBURGER R & NEHER E. 1999. Properties of a model of Ca++ -dependent vesicle pool dynamics and short term synaptic depression. Biophys. J., 77: 2418–2429.

[58] WHITFIELD JF & CHAKRAVARTHY B. 2001. Calcium: The grandmaster cell signaler. NRC Research Press, Ottawa.

[59] ZAMPONI G. 2005. Voltage-gated calcium channels. Landes Bio-science. Kluwer Academic/Plenum Publishers, New York.

Search










Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertisers/Sponsors
Advertises Media Information