Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:
SOLGRAF Editora
solgraf@gmail.com






95/105= 0.91


1,1

The magnetic field in the Small Magellanic Cloud and in the Magellanic Bridge

doi: 10.6062/jcis.2012.03.03.0062

Authors

A. Lobo Gomes et. al.

Abstract

The Small Magellanic Cloud (SMC) and the Large Magellanic Cloud (LMC) are irregular galaxies orbiting the Milky Way. It is be lieved that the Magellanic Bridge, a structure linking SMC and LMC, was formed due to the interaction between the Clouds. The aim of this work is to study the magnetic field structure at the Northeast and the Wing sections of the SMC and at the Magellanic Bridge. For this purpose we have used optical polarimetric data and constructed a polarization map in order to trace the sky-projected magnetic field component. Furthermore, we are using MHD simulations to investigate the role of the magnetic field on the interaction of these galaxies and how it may have influenced the formation of the Magellanic Bridge and preliminary results of these numerical studies are also shown.

Keywords

Magellanic Clouds: Small Magellanic Cloud, Magellanic Bridge; ISM: magnetic fields; techniques: optical polarimetry; simulations: MHD simulations.

References

[1] Bekki, K, 2009. Models for the dynamical evolution of the Magellanic System, IAUS 256: 105-116.

[2] Hindman, JV, Kerr, FJ, McGee, RX, 1963. A Low Resolution Hydrogen-line Survey of the Magellanic System. II. Interpretation of Results, Australian Journal of Physics 16: 570-+.

[3] Irwin, MJ, Kunkel, WE, Demers, S, 1985. A blue stellar population in the H I bridge between the two Magellanic Clouds, Nature 318: 160-+.

[4] Bekki, K., Chiba, M, 2005. Formation and evolution of the Magellanic Clouds - I. Origin of structural, kinematic and chemical properties of the Large Magellanic Cloud, MNRAS 356: 680-702.

[5] Westerlund, BE, 1991. Review: an Overview of the Structure and Kinematics of the Magellanic Clouds, IAUS 148: 15-+.

[6] Muller, E, Bekki, K, 2007. The origin of large-scale HI structures in the Magellanic Bridge, MNRAS 381: L11-L15.

[7] Gardiner, LT, Noguchi, M, 1996. N-body simulations of the Small Magellanic Cloud and the Magellanic Stream, MNRAS 278: 191-208.

[8] Murai, T, Fujimoto, M, 1980. The Magellanic Stream and the Galaxy with a Massive Halo, PASJ 32: 581-+.

[9] Mao, SA, Gaensler, BM, Stanimirovi ́c, S, Haverkorn, McClure-Griffiths, NM, Staveley-Smith, L, Dickey, JM, 2008. A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud, ApJ 688: 1029-1049.

[10] Zweibel, EG, Heiles, C, 1997. Magnetic fields in galaxies and beyond, Nature 385: 131-136.

[11] Magalh ̃aes, AM, Gomes, AL, Vidotto, AA, Rodrigues, Pereyra, A, Wisniewski, J, Bjorkman, K, Bjorkman, J, Meade,M, Babler, BL, 2009. The magnetic field structure of the Small Magellanic Cloud, IAUS 256: 178-183.

[12] Magalh ̃aes, AM, Loiseau, N, Rodrigues, CV, Piirola, V, Magnetic field structure in the Small Magellanic Cloud, IAUS 140: 255-+.

[13] Schmidt, T, 1976. Starlight polarization in the Magellanic Cloud regions, A&AS 24: 357-378.

[14] Mathewson, DS, Ford, VL, 1970. The Magnetic-Field Structure of the Magellanic Clouds, ApJL 160: L43+.

[15] Rodrigues, CV, Magalh ̃aes, AM, Coyne, GV, Piirola, V, Dust in the Small Magellanic Cloud: Interstellar Polarization and Extinction, ApJ 485: 618-+.

[16] Kowal, G, Lazarian, A, Beresnyak, A, 2007. Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology, ApJ 658: 423-445.

[17] Piatek, S, Pryor, C, Olszewski, EW, 2008. Proper Motions of the Large Magellanic Cloud and Small Magellanic Cloud: Re-Analysis of Hubble Space Telescope Data, AJ 135: 1024-1038.

Search










Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertisers/Sponsors
Advertises Media Information