Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:
SOLGRAF Editora
solgraf@gmail.com






95/105= 0.91


1,1

Automatic spectral classification using artificial neural networks and their application to distance determination

doi: 10.6062/jcis.2013.04.01.0065

Authors

S. Navarro, L. J. Corral , M. de los A. Isidro, C. G. Padilla

Abstract

In Astrophysics, the spectral classification is a well defined classification system with a well established set of standard stars that define each spectral type. The relation between the spectral type and the multiple factors involved are not lineal by far. This make the spectral classification process an ideal candidate to apply Artificial Neural Networks (ANNs). The signal to noise ratio (SNR) of spectra obtained in survey missions are not always ideal for spectral classification, the actual surveys are acquiring thousands of spectra and, in the near future, the GAIA project and other surveys will have the capacity to obtain hundreds of thousands, this motivated the developed of methods to automatise the spectral classification. We present here some results of the application of automatic classification to low SNR spectra using ANNs, and the use of such classification for the determination of PNe distances. In this work we compare our results with previous distance determinations of the studied objects and with determinations of the distances using photometric and spectroscopic data from the virtual observatory (VO).

Keywords

computational data analysis, artificial neural networks, automatic spectral classification.

References

[1] JACOBY GH, HUNTER DA & CHRISTIAN CA. 1984. ApJS, 56: 257.

[2] KURTZ MJ. 1984. The MK Process & stellar classification. R.F.Garrison, ed. U. of Toronto, 136.

[3] NAVARRO SG. 2005. Determinaci┬┤on de distancias a Nebulosas Planetarias, PhD Thesis, U. de la Laguna.

[4]NAVARRO SG, CORRADI RLM & MAMPASO A. 2012. A&A, 538A:76.

[5] VON HIPPEL T, STORRIE-LOMBARDI L, STORRIE-LOMBARDI M & IRWIN M. 1994. MNRAS, 269: 97.

[6] WEAVER WB & TORRES-DODGEN AV. 1997. ApJ, 487: 847

Search










Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertisers/Sponsors
Advertises Media Information