Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:

95/105= 0.91


Modeling stellar atmospheres with PHOENIX

doi: 10.6062/jcis.2013.04.01.0068(Free PDF)


Dennis Jack , Peter H. Hauschildt and Ed Baron


We will present an overview of the general-purpose stellar and planetary atmosphere code PHOENIX. With PHOENIX one can calculate model atmospheres and spectra of stars all across the HR-diagram including main sequence stars, giants, white dwarfs, stars with winds, TTauri stars, novae, supernovae, brown dwarfs and extrasolar giant planets. To be able to compute models of such different types of astrophysical objects many different types of physical processes need to be included in model atmosphere codes like PHOENIX. Most of the work with PHOENIX has been done by assuming the model atmospheres of the astrophysical objects to be one di- mensional. Recent progress in computer science now allows for the development of a 3D stellar and planetary atmosphere code. We will present the recent achievements in the development of our 3D radiative transfer framework. We are able to solve the radiative transfer for given atmospheric structures of a stellar or planetary object in different geometries like Cartesian, spherical and cylindrical coordinate systems. We will also present the most recent extension of a time-dependent treatment of the radiative transfer equation in detail.


computational physics and chemistry, radiative transfer, numerical methods.


[1] HAUSCHILDT. 1992. A fast operator perturbation method for the solution of the special relativistic equation of radiative transfer in spherical symmetry. JQSRT, 47: 433–453.

[2] HAUSCHILDT, BARMAN, BARON & ALLARD. 2003. Temperature Correction Methods, Stellar Atmosphere Modeling. ASP Confer- ence Proceedings, Vol. 288: 227.

[3] HAUSCHILDT & BARON. 1999. Numerical solution of the expand- ing stellar atmosphere problem. JCAM, 109: 41–63.

[4] HAUSCHILDT. 1993. Multi-level non-LTE radiative transfer in ex- panding shells. JQSRT, 50: 301–318.

[5] DE, S, BARON & HAUSCHILDT. 2010. On the hydrogen recom- bination time in Type II supernova atmospheres. MNRAS, 401: 2081–2092.

[6] ALLARD, NF, ALLARD F, HAUSCHILDT, KIELKOPF & MACHIN. 2003. A new model for brown dwarf spectra including accurate uni- fied line shape theory for the Na I and K I resonance line profiles. A&A, 411: L473–L476.

[7] JOHNAS, HAUSCHILDT, SCHWEITZER, MULLAMPHY, PEACH & WHITTINGHAM. 2007. The effects of new Na I D line profiles in cool atmospheres. A&A, 466: 323–325.

[8] JACK, HAUSCHILDT & BARON. 2009. Time-dependent radiative transfer with PHOENIX. A&A, 502: 1043–1049.

[9] JACK, HAUSCHILDT & BARON. 2011. Theoretical light curves of type Ia supernovae. A&A, 528: A141.

[10] JACK, HAUSCHILDT & BARON. 2012. Near-infrared light curves of type Ia supernovae. A&A, 538: A132.

[11] WANG X, WANG L, FILIPENKO et al. 2012. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope. ApJ, 749: 126.

[12] HAUSCHILDT & BARON. 2006. A 3D radiative transfer framework. I. Non-local operator splitting and continuum scattering problems. A&A, 451: 273–284.

[13] BARON & HAUSCHILDT. 2007. A 3D radiative transfer framework. II. Line transfer problems. A&A, 468: 255–261.

[14] HAUSCHILDT & BARON. 2008. A 3D radiative transfer framework. III. Periodic boundary conditions. A&A, 490: 873–877.

[15] HAUSCHILDT & BARON. 2009. A 3D radiative transfer framework. IV. Spherical and cylindrical coordinate systems. A&A, 498: 981– 985.

[16] BARON, HAUSCHILDT & CHEN. 2009. A 3D radiative transfer framework. V. Homologous flows. A&A, 498: 987–992.

[17] HAUSCHILDT & BARON. 2010. A 3D radiative transfer framework. VI. PHOENIX/3D example applications. A&A, 509: A36+.

[18] SEELMANN, HAUSCHILDT & BARON. 2010. A 3D radiative trans- fer framework. VII. Arbitrary velocity fields in the Eulerian frame. A&A, 522: A102+.

[19] HAUSCHILDT & BARON. 2011. A 3D radiative transfer framework. VIII. OpenCL implementation. A&A, 533: A127.

[20] JACK, HAUSCHILDT & BARON. 2012. A 3D radiative transfer framework. IX. Time dependence. A&A, 546: A39.

[21] CHEN, B, KANTOWSKI, BARON, KNOP & HAUSCHILDT. 2007. Steps for solving the radiative transfer equation for arbitrary flows in stationary space-times. MNRAS, 380: 104–112.


Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertises Media Information