Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:

95/105= 0.91


Computational analysis of mitochondrial genomic sequences in Dermatophytes for the identification of conserved coil functional residues.

doi: 10.6062/jcis.2013.04.03.0077


B. Gupta and J. Kaur


Dermatophyte is a group of closely related fungi that have the capacity to invade keratinized tissue of humans and other animals, causing an infection, known as dermatophytosis. The identification of evolutionary relationship between three genera of dermatophyte is epidemiologically important to understand their pathogenicity. Mitochondrial genome reported to be less affected by genetic recombination, shows a higher rate of evolution and offer many advantages for phylogenetic studies. Thus, here we present a novel scheme to identify the conserved coil functional residues of Epidermophyton floccosum, Microsporum canis, Trichophyton mentagrophytes and Trichophyton rubrum. For the identification of such residues, mitochondrion genomic analysis was done using various tools and software’s viz. BLAST, Clustal W2, MODELLER 9v6, ORF Finder, SPDB Viewer, GOR V and LIGSITE. Protein coding sequences of the mitochondria genome, retrieved from GenBank were aligned for the similar sequences. For secondary structure, homology modelling was performed and pockets were identified using Ligsite. These results were then compared with GOR V and MSA results. Comparative analysis of the protein sequences revealed the presence of functionally active sites. However absence of such sites in Epidermophyton floccosum, could be responsible for its lesser predominance and infectivity as compared to other two genera. The functional coil residues identified can further be used for studying the protein-protein interactions and act as the target molecules for drug designing.


Dermatophyte, Genome, Homology, Protein structure, Protein sequences.


[1] ADEFEMI SA, ODEIGAH LO & ALABI KM. 2011. Prevalence of dermatophytosis among primary school children in Oke-oyi community of Kwara state. Niger J Clin Pract., 14:23-8.

[2] R. N. Mantegna and H. E. Stanley, "An introduction to econophysycs: Correlations and Complexity in Finance" , Cambridge-University Press, (2000).

[3] ALTSCHUL SF, MADDEN TL, SCHAFFER AA, ZHANG J, ZHANG Z, MILLER W & LIPMAN DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res., 25(17):3389-3402.

[4] ASHFORD P, MOSS DS, ALEX A, YEAP SK, POVIA A, NOBELI I & WILLIAMS MA. 2012. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets. BMC Bioinformatics, 13:39.

[5] BOKHARI MA, HUSSAIN I, JAHANGIR M, HAROON TS, AMAN S & KHURSHID K. 1999.Onychomycosis in Lahore, Pakistan. Int. J. Dermatol., 38:591-595.

[6] DAI T, LIU Q, GAO J, CAO Z & ZHU R. 2011. A new protein-ligand binding sites prediction method based on the integration of protein sequence conservation information. BMC Bioinformatics, 12(Suppl14):S9.

[7] ELLABIB MS & KHALIFA ZM. 2001. Dermatophytes and other fungi associated with skin mycoses Tripoli, LIBYA. Ann Saudi Med., 21(3-4):193-195.

[8] HAINER B L. Dermatophyte Infections. 2003. Am Fam Physician., 67(1):101-109.

[9] HANUMANTHAPPA H, SAROJINI K, SHILPASHREE P & MUDDAPUR SB. 2012.Clinicomycological study of 150 cases of dermatophytosis in a tertiary care hospital in South India. Indian J Dermatol., 57:322-3.

[10] HAY RJ. 2001. The future of onychomycosis therapy may involve a combination of approaches. Br J Dermatol., 145:3-8.

[11] HUANG B & SCHROEDER M. 2006. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Structural Biology, 6:19.

[12] JEON J, YANG JS & KIM S. 2009. Integration of evolutionary features for the identification of functional important residues in major facilitator super family transporters. PLoS Comput Biol.,5(10):e1000522.

[13] JHA BK & MURTHY SM. 2013. Studies on invasive keratinophilic dermatophytes of human hair. Journal of Drug Delivery & Therapeutics, 3(2):70-74.

[14] LAKSHMIPATHY D &, KANNABIRAN K. 2010. Review on dermatomycosis: pathogenesis and Treatment. Natural Science, 2(7):726-731.


[16] LUND A & DEBOER DJ. 2008. Immunoprophylaxis of Dermatophytosis in Animals. Journal of Mycopathologia, 166(5-6): 407-424.

[17] MADHAVI S, RAMA RAO MV & JYOTHSNA K. 2011. Mycological study of Dermatophytosis in rural population. Annals of Biological Research, 2(3):88-93.

[18] MAHMOUDABADI AZ. 2005. A study of dermatophytosis in South West of Iran (Ahwaz). Journal of Mycopathologia, 160(1), 21-24.

[19] MARTINEZ DA et al. 2012. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. mBio., 3(5):e00259–12, doi:10.1128 (An ASM Access Publication).

[20] MARUTHI YA, HOSSAIN K & CHAITANYA DA. 2012. Incidence of dermatophytes school soils of Visakhapatnam: A case study. Asian Journal of Plant Science and Research, 2(4):534-538.

[21] MATHUR M, KEDIA SK & GHIMIRE RBK. 2012. "Epizoonosis of Dermatophytosis": A Clinico Mycological Study of Dermatophytic Infections in Central Nepal. Kathmandu Univ Med J., 37(1):30-3.

[22] METINTAS S, KIRAZ N, ARSLANTAS D, AKGUN Y, KALYONCU C, KIREMITCI A & UNSAL A. 2004. Frequency and risk factors of dermatophytosis Turkey. Journal of Mycopathologia, 157(4):379-382.

[23] MUKHERJEE PK, ISHAM N & GHANNOUM MA. 2011. Infectious Diseases of the Skin I:Dermatophytosis/Onychomycosis, book: Molecular Diagnostics in Dermatology and Dermatopathology. Current Clinical Pathology, 311-337.

[24] MULLER A, GUAGUERE E, DEGORCE-RUBIALES F & BOURDOISEAU G. 2011.Dermatophytosis due to Microsporum persicolor: A retrospective study of 16 cases. Can Vet J., 52:385–388.

[25] SEN TZ, JERNIGAN RL, GARNIER J & KLOCZKOWSKI A. 2005. GOR V server for protein secondary structure prediction. Bioinformatics, 21:2787-2788.

[26] SENTAMILSELVI G, KAMALAM A, AJITHADAS K, JANAKI C & THAMBIAH AS. 1997. Scenario of chronic dermatophytosis: An Indian study. Journal of Mycopathologia, 140(3):129-135.

[27] SUMATHI S, MARIRAJ J, SHAFIYABI S, RAMESH R & KRISHNA S. 2013. Clinicomycological study of dermatophytes. Int J Pharm Biomed Res., 4(2):132-134.

[28] SUMMERBELL RC. 1997. Epidemiology and ecology of onychomycosis. Dermatology, 194:32-36.

[29] TANAKA-FUJITA R, SOENO Y, SATOH H, NAKAMURA Y & MORI S. 2007. Human and mouse protein-noncoding snoRNA host genes with dissimilar nucleotide sequences show chromosomal synteny. RNA, 13(6):811–816.

[30] TRIPATHI V, SANKRIT S & GUPTA DK. 2010. Homology modelling of neuraminidase protein of the novel H1N1subtype of swine influenza virus of A/California/04/2009/H1N1. Archives of Applied Science Research, 2(6):93-97.

[31] WEITZMANI1 I & SUMMERBEL RC. 1995. The dermatophytes. Clin. Microbiol., 8:240–259.

[32] WHITE TC, OLIVER BG, GRASER Y & HENN MR. 2008. Generating and testing molecular hypotheses in the dermatophytes. Eukaryotic Cell, 7(8):1238–1245.

[33] WU Y, YANG J, YANG F, LIU T, LENG W, CHU Y & JIN Q. 2009. Recent dermatophyte divergence revealed by comparative and phylogenetic analysis of mitochondrial genomes. BMC Genomics, 10:238.

[34] YENISEHIRLI G, KARAT E, BULUT Y & SAVCI U. 2012. Dermatophytes Isolated from the Mosques in Tokat, Turkey. Journal of Mycopathologia, 174(4):327-330.


Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertises Media Information