Cespe UnB

Editorial Assistants:
W. Abrahão
G. Oliveira
L. Salgueiro

Editorial Technical Support:
D. H. Diaz
M. A. Gomez
J. Barbosa

Editorial management and production:
SOLGRAF Editora
solgraf@gmail.com






95/105= 0.91


1,1

Pycosmicstar: A semi-analytical model and Web-Based Application to the Study the Cosmic Star Formation Rate

doi: 10.6062/jcis.2014.05.01.0079

Authors

E. S. Pereira

Abstract

The Cosmic Star Formation Rate (CSFR) represents the rate of gas conversion in star into a given comove volume and time. Understanding the CSFR has an important role in the modern astrophysics. A semi-analytical form of the CSFR can be used to test alternative cosmological models and to study process that might have been occurred in the called cosmological dark age. The main objective of this work is to detail the pycosmicstar (PYthon COSMIC STar formationRate), which is a new computational package and a web-based application used for exploring the influences of the cosmological parameters and the Initial Mass Function in the CSFR. The main given contribution of this work is to release this package for the scientific community under the GNU General Public License version 3. Moreover, was developed a web-based application www.cosmicstarformation.com under responsive design principles.

Keywords

stars; evolution; stars: formation; stars: general; galaxies;

References

[1] Bardeen J.M., Bond J.R., Kaiser N., Szalay A.S., 1986, ApJ, 304, 15

[2] Behnel S.,et al. 2011. Computing in Science & Engineering, 13, 2, 31.

[3] Benson, A. J. 2012. New Astronomy, 17. 2. 175.

[4] Bessada, D. and Miranda, O. D. 2013. Phys. Rev. D. 88. 8. 083530.

[5] Carrol S.M., Press W.H., Turner E.L, 1992, ARA&A, 30, 499

[6] Copi C.J., 1997, Apj, 487, 704

[7] Daigne F., Olive K.A., Silk J., Stoehr F., Vangioni E., 2006, ApJ, 647, 773

[8] De Araujo J.C.N., Miranda O.D., Aguiar O.D. 2002, MNRAS, 330, 3, 651.

[9] Efstathiou G., Bond J.R., White S.D.M., 1992, MNRAS, 258, 1p

[10] Fardal M.A., Katz N., Weinberg D.H., Dav ́e R. 2007, RAS, 379, 958

[11] Franceschini, A., et al. 1999, MNRAS, 310, L5

[12] GUPTA, R, 2002. Making Use of Python. Wiley Publishing.

[13] Haiman, Z., Ciotti, L., Ostriker, J.P. 2004, APJ, 606, 763

[14] Hao, J.M, Yuan, Y. F., 2013, Apj, 772, 42.

[15] Hao, J.M, Yuan, Y. F., 2013, A&A, 558, A22.

[16] Heckman, T.M., et al. 2004, APJ, 613, 109

[17] Heger A., Woosley S.E., 2002, Apj, 567, 532

[18] Hinsen K., 2007. Computing in science & engineering. Nov./Dec. 82-89.

[19] Hinsen K., Langtagen H.P., Skavhaug O.,269 Future Generation Computer Systems. 22. 123.

[20] Hopkins P.F. 2004, ApJ, 615, 209

[21] Hopkins P.F. 2007, ApJ, 654, 1175

[22] Hopkins A.M., Beacom J.F. 2006, ApJ, 651, 142

[23] Jenkins A., Frenk C.S., White S.D.M., Colberg J.M., Cole S., Evrard A. E., Couchman H., Yoshida N., 2001, MNRAS, 321, 372

[24] Kauffmann, G., et al. 2003, MNRAS, 346, 1055

[25] Mahamood, A., Devriendt, J.E.G., Silk, J. 2005, MNRAS, 359, 1363

[26] Merloni, A., Rudnick, G., Di Matteo, T. 2004, MNRAS, 354, L37

[27] Peacock J.A., 1999, Cosmological Physics, Cambridge University Press, Cambrige, 682

[28] Pereira, E. S., Miranda, O.D., 2011, MNRAS, 418,L30

[29] Pereira E.S., Miranda O.D. 2010, MNRAS, 401, 1924

[30] Peterson P., 2009. IJCSE, 4, 4, 296.

[31] Press W.H., Schechter P., 1974, Apj, 193, 425

[32] Salpeter E.E., 1955, Apj, 121, 161

[33] Salvadori S., Schneider R., Ferrara A., 2007, MNRAS, 381, 647

[34] Scalo J., Fund. Cosm. Phys., 1986, 11, 1

[35] Sheth R.K., Tormen G., 1999, MNRAS, 308, 119

[36] Springel V., Hernquist L. 2003, MNRAS, 339, 312

[37] Tinker, J. L., et al. 2010, ApJ, 724, 2, 878

[38] Wang, J., Chen, Y., Zhang, F. 2006, APJ, 647, L17

[39] Warren M. S., et al. 2006, ApJ, 646, 2, 881

Search










Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertisers/Sponsors
Advertises Media Information