Cespe UnB

Editorial Office:
R. S. Oyarzabal

Technical Support:
D. H. Diaz
M. A. Gomez
W. Abrahão
G. Oliveira

Publisher by
Knobook Pub



Potential Increased performance of an array of Cherenkov telescopes by means of their positioning using many-objective evolutionary optimizations

doi: 10.6062/jcis.2019.09.03.0153

(Free PDF)


Bruno F. Souto and Ulisses Barres de Almeida


This paper is concerned with the performance optimization of an array of at most six imaging atmospheric Cherenkov telescopes as a function of their positions on the ground. Two types of telescopes were used, with ranges of detection equal to 300 m or 500 m. The ideas presented here were developed around an alternative way that employs a modelling step and the implemen- tation of an evolutionary algorithm. We look for configurations that were not investigated by Monte Carlo simulations yet. We found solutions repre- sented by geometric shapes with 3 to 6 telescopes. This is an initial work and the methods developed here have potential applications in other optimization issues on Gamma Ray Astronomy.


Gamma-ray astronomy, imaging atmospheric Cherenkov telescopes, multi-objective optimization, EliteNSGA-III.


[1] HILLAS, A. Evolution of ground-based gamma-ray astronomy from the early days to the Cherenkov Telescope Arrays. Astroparticle Physics, Elsevier, v. 43,p. 19, 2013..

[2] WEEKES, T. C. et al. Observation of TeV gamma rays from the Crab Neb- ula using the atmospheric Cerenkov imaging technique. The Astrophysical Journal, v. 342, p. 379, 1989..

[3] HINTON, J. Ground-based gamma-ray astronomy with Cherenkov tele- scopes. New Journal of Physics, IOP Publishing, v. 11, n. 5, p. 055005, 2009..

[4] HOFMANN,W.; et al. On the optimum spacing of stereoscopic imaging at- mospheric Cherenkov telescopes. Astroparticle Physics, Elsevier, v. 13, n. 4, p. 253258, 2000.

[5] DENMAN, J. Design studies for a multi-TeV telescope array: PeX (PeV eX- plorer). PhD Thesis University of Adelaide, Australia, 2012.

[6] THE CTA CONSORTIUM. Cherenkov Telescope Array: The next generation gamma-ray observatory. ArXiv preprint arXiv:1709.05434, 2017.

[7] HECK, and DIETER, et al. CORSIKA: A Monte Carlo code to simulate ex- tensive air showers. FZKA 6019. Technical Report, 1998.

[8] BERNLHR, K.; et al. Monte Carlo design studies for the Cherenkov Tele- scope Array. Astroparticle Physics, Elsevier, v. 43, p. 171, 2013.

[9] BERNLHR, K.; et al. Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array. ArXiv preprint arXiv:1307.2773, 2013.

[10] BARNACKA, A.; et al. Performance of the Cherenkov Telescope Array at energies above 10 TeV. ArXiv preprint arXiv:1307.3409, 2013.

[11] AHARONIAN, F.; HOFMANN, W.; KONOPELKO, A.; VLK, H. The potential of ground based arrays of imaging atmospheric Cherenkov telescopes I. Determination of shower parameters. Astroparticle Physics, Elsevier, v. 6, n. 3-4, p. 343, 1997.

[12] PANDURO, Marco A. et al. A multi-objective approach in the linear antenna array design. AEU-International Journal of Electronics and Communications, v. 59, n. 4, p. 205, 2005.

[13] DEB, K. Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, 2001.

[14] Simon, D. Evolutionary Optimization Algorithms, 2013, John Wiley & Sons.

[15] COELLO, C. A. C. et al. Evolutionary algorithms for solving multi-objective problems, Springer, 2007.

[16] MAIER, G.; ARRABITO, L.; BERNLHR, K.; BREGEON, J.; CUMANI, P.; HASSAN, T.; MORALEJO, A. Performance of the Cherenkov Telescope Array. ArXiv preprint arXiv:1709.01381, 2017.

[17] KONOPELKO, A.; et al. Performance of the stereoscopic system of the HEGRA imaging air Cerenkov telescopes: Monte Carlo simulations and ob- servations. Astroparticle Physics, Elsevier, v. 10, n. 4, p. 275, 1999.

[18] BERNLHR, K.; et al. Monte Carlo design studies for the Cherenkov Tele- scope Array. Astroparticle Physics, Elsevier, v. 43, p. 171, 2013.

[19] HILLAS, A. M. Cerenkov light images of EAS produced by primary gamma. In: International Cosmic Ray Conference. 1985. v. 3.

[20] ALEKSIC, J.; et al. The major upgrade of the MAGIC telescopes, part II: A performance study using observations of the Crab Nebula. Astroparticle Physics, Elsevier, v. 72, p. 76, 2016.

[21] DEB, K.; JAIN, H. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evolutionary Computation, v. 18, n. 4, p. 577, 2014.

[22] IBRAHIM, A.; RAHNAMAYAN, S.; MARTIN, M. V.; DEB, K. EliteNSGA- III: An improved evolutionary many-objective optimization algorithm. In: IEEE. Evolutionary Computation (CEC), 2016 IEEE Congress on., 2016. p. 973.

[23] AGRAWAL, R. B.; DEB, K.; AGRAWAL, R. Simulated binary crossover for continuous search space. Complex systems, v. 9, n. 2, p. 115, 1995.

[24] YUAN, Y.; XU, H.;WANG, B. An improved NSGA-III procedure for evolu- tionary many-objective optimization. In: ACM. Proceedings of the 2014 An- nual Conference on Genetic and Evolutionary Computation, 2014. p. 661668.

[25] HOFMANN, W.; JUNG, I.; KONOPELKO, A.; KRAWCZYNSKI, H.; LAMPEITL, H.; PHLHOFER, G. Comparison of techniques to reconstruct VHE gamma-ray showers from multiple stereoscopic Cherenkov images. As- troparticle Physics, Elsevier, v. 12, n. 3, p. 135, 1999.

[26] DUTTA, J.; GUPTA, A.; SENGUPTA, R. N. Decision sciences: theory and practice. CRC Press, 2017.


Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis
doi: 10.6062/jcis.2008.01.01.0005
Freitas and Shimabukuro(Free PDF)

Riddled basins in complex physical and biological systems
doi: 10.6062/jcis.2009.01.02.0009
Viana et al.(Free PDF)

Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain
doi: 10.6062/jcis.2008.01.01.0006
Alcantara.(Free PDF)

A new multi-particle collision algorithm for optimization in a high performance environment
doi: 10.6062/jcis.2008.01.01.0001
Luz et al.((Free PDF)

Reviewer Guidelines
(Under Construction)
Advertises Media Information