Editorial Office:

Management:

R. S. Oyarzabal

Technical Support:

D. H. Diaz

M. A. Gomez

W. Abrahão

G. Oliveira

Publisher by

Knobook Pub

doi: 10.6062/jcis.2019.09.03.0153

(Free PDF)Bruno F. Souto and Ulisses Barres de Almeida

This paper is concerned with the performance optimization of an array of at most six imaging atmospheric Cherenkov telescopes as a function of their positions on the ground. Two types of telescopes were used, with ranges of detection equal to 300 m or 500 m. The ideas presented here were developed around an alternative way that employs a modelling step and the implemen- tation of an evolutionary algorithm. We look for configurations that were not investigated by Monte Carlo simulations yet. We found solutions repre- sented by geometric shapes with 3 to 6 telescopes. This is an initial work and the methods developed here have potential applications in other optimization issues on Gamma Ray Astronomy.

Gamma-ray astronomy, imaging atmospheric Cherenkov telescopes, multi-objective optimization, EliteNSGA-III.

[1] HILLAS, A. Evolution of ground-based gamma-ray astronomy from the early days to the Cherenkov Telescope Arrays. Astroparticle Physics, Elsevier, v. 43,p. 19, 2013..

[2] WEEKES, T. C. et al. Observation of TeV gamma rays from the Crab Neb- ula using the atmospheric Cerenkov imaging technique. The Astrophysical Journal, v. 342, p. 379, 1989..

[3] HINTON, J. Ground-based gamma-ray astronomy with Cherenkov tele- scopes. New Journal of Physics, IOP Publishing, v. 11, n. 5, p. 055005, 2009..

[4] HOFMANN,W.; et al. On the optimum spacing of stereoscopic imaging at- mospheric Cherenkov telescopes. Astroparticle Physics, Elsevier, v. 13, n. 4, p. 253258, 2000.

[5] DENMAN, J. Design studies for a multi-TeV telescope array: PeX (PeV eX- plorer). PhD Thesis University of Adelaide, Australia, 2012.

[6] THE CTA CONSORTIUM. Cherenkov Telescope Array: The next generation gamma-ray observatory. ArXiv preprint arXiv:1709.05434, 2017.

[7] HECK, and DIETER, et al. CORSIKA: A Monte Carlo code to simulate ex- tensive air showers. FZKA 6019. Technical Report, 1998.

[8] BERNLHR, K.; et al. Monte Carlo design studies for the Cherenkov Tele- scope Array. Astroparticle Physics, Elsevier, v. 43, p. 171, 2013.

[9] BERNLHR, K.; et al. Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array. ArXiv preprint arXiv:1307.2773, 2013.

[10] BARNACKA, A.; et al. Performance of the Cherenkov Telescope Array at energies above 10 TeV. ArXiv preprint arXiv:1307.3409, 2013.

[11] AHARONIAN, F.; HOFMANN, W.; KONOPELKO, A.; VLK, H. The potential of ground based arrays of imaging atmospheric Cherenkov telescopes I. Determination of shower parameters. Astroparticle Physics, Elsevier, v. 6, n. 3-4, p. 343, 1997.

[12] PANDURO, Marco A. et al. A multi-objective approach in the linear antenna array design. AEU-International Journal of Electronics and Communications, v. 59, n. 4, p. 205, 2005.

[13] DEB, K. Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, 2001.

[14] Simon, D. Evolutionary Optimization Algorithms, 2013, John Wiley & Sons.

[15] COELLO, C. A. C. et al. Evolutionary algorithms for solving multi-objective problems, Springer, 2007.

[16] MAIER, G.; ARRABITO, L.; BERNLHR, K.; BREGEON, J.; CUMANI, P.; HASSAN, T.; MORALEJO, A. Performance of the Cherenkov Telescope Array. ArXiv preprint arXiv:1709.01381, 2017.

[17] KONOPELKO, A.; et al. Performance of the stereoscopic system of the HEGRA imaging air Cerenkov telescopes: Monte Carlo simulations and ob- servations. Astroparticle Physics, Elsevier, v. 10, n. 4, p. 275, 1999.

[18] BERNLHR, K.; et al. Monte Carlo design studies for the Cherenkov Tele- scope Array. Astroparticle Physics, Elsevier, v. 43, p. 171, 2013.

[19] HILLAS, A. M. Cerenkov light images of EAS produced by primary gamma. In: International Cosmic Ray Conference. 1985. v. 3.

[20] ALEKSIC, J.; et al. The major upgrade of the MAGIC telescopes, part II: A performance study using observations of the Crab Nebula. Astroparticle Physics, Elsevier, v. 72, p. 76, 2016.

[21] DEB, K.; JAIN, H. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evolutionary Computation, v. 18, n. 4, p. 577, 2014.

[22] IBRAHIM, A.; RAHNAMAYAN, S.; MARTIN, M. V.; DEB, K. EliteNSGA- III: An improved evolutionary many-objective optimization algorithm. In: IEEE. Evolutionary Computation (CEC), 2016 IEEE Congress on., 2016. p. 973.

[23] AGRAWAL, R. B.; DEB, K.; AGRAWAL, R. Simulated binary crossover for continuous search space. Complex systems, v. 9, n. 2, p. 115, 1995.

[24] YUAN, Y.; XU, H.;WANG, B. An improved NSGA-III procedure for evolu- tionary many-objective optimization. In: ACM. Proceedings of the 2014 An- nual Conference on Genetic and Evolutionary Computation, 2014. p. 661668.

[25] HOFMANN, W.; JUNG, I.; KONOPELKO, A.; KRAWCZYNSKI, H.; LAMPEITL, H.; PHLHOFER, G. Comparison of techniques to reconstruct VHE gamma-ray showers from multiple stereoscopic Cherenkov images. As- troparticle Physics, Elsevier, v. 12, n. 3, p. 135, 1999.

[26] DUTTA, J.; GUPTA, A.; SENGUPTA, R. N. Decision sciences: theory and practice. CRC Press, 2017.

Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis

doi: 10.6062/jcis.2008.01.01.0005

Freitas and Shimabukuro(Free PDF) Riddled basins in complex physical and biological systems

doi: 10.6062/jcis.2009.01.02.0009

Viana et al.(Free PDF) Use of ordinary Kriging algorithm and wavelet analysis to understanding the turbidity behavior in an Amazon floodplain

doi: 10.6062/jcis.2008.01.01.0006

Alcantara.(Free PDF) A new multi-particle collision algorithm for optimization in a high performance environment

doi: 10.6062/jcis.2008.01.01.0001

Luz et al.((Free PDF)