
“main” — 2010/5/7 — 16:53 — page 187 — #1

Journal of Computational Interdisciplinary Sciences (2010) 1(3): 187-206
© 2010 Pan-American Association of Computational Interdisciplinary Sciences
ISSN 1983-8409
http://epacis.org

The Brazilian Virtual Observatory – A New Paradigm for Astronomy

R.R. de Carvalho1, R.R. Gal2, H.F. de Campos Velho1, H.V. Capelato1, F. La Barbera3,
E.C. Vasconcellos1, R.S.R. Ruiz1, J.L. Kohl-Moreira4, P.A.A. Lopes5 and M. Soares-Santos6

Manuscript received on September 09, 2009 / accepted on January 20, 2010

ABSTRACT

We present an overview of current and future Brazilian contributions to an emerging paradigm in astronomy, the Virtual Observatory
(VO). Astronomy will soon accumulate an unprecedented amount of data, on the order of 100 PB, while adding 2-4 PB/year – an
astonishing five orders of magnitude greater than in 2000. The VO is a response to the astronomical community’s demands for
improved and homogenized access to these data, combined with the tools to manipulate and explore them. It is a complex enter-
prise with a decentralized, webcentric nature, implying that astronomers need to rethink the old ways of conducting their scientific
programs. Today an international effort is coordinated by the International Virtual Observatory Alliance (IVOA). In Brazil, the National
Institute for Science & Technology (INCT-Astrophysics) recently created by the Ministry of Science & Technology (MCT) is taking the
lead in developing BRAVO (The BRAzilian Virtual Observatory). At the National Institute for Space Research (INPE), we are concentra-
ting our efforts on three distinct aspects of VO development: database development and basic infrastructure, data grid and processing
grid implementation, and data mining. This paper describes our approach to creating a roadmap for the VO in Brazil and some technical
developments on which we have already embarked.
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1 INTRODUCTION

Astronomy is now an enormously data-rich science, and curren-
tly produces terabytes of raw data per day, with a few petabytes
already in various archives. Both the data volume and data rate
are increasing exponentially, with a doubling time of 1.5 years.
Even more important is the growth of data complexity (expressed,
e.g., as the dimensionality of the parameter space spanned by the
measurements of the detected sources) and heterogeneity. These
data are now being federated in a global data grid under the um-
brella of the Virtual Observatory (VO). A complete and effective
scientific exploitation and exploration of these large and complex
data spaces is a highly non-trivial task, requiring a new generation
of software (databases, scalable data mining tools, interfaces),
hardware (computing power, storage, network infrastructure), and
expertise. The absence of these resources is a key bottleneck in
data-rich astronomy: the data are there, but the means of extrac-
ting knowledge from them are not.

Figure 1 demonstrates the severity of these problems. We
see the rapid increase in data volume from only a decade ago,
where the Digitized Second Palomar Observatory Sky Survey pro-
vided single-epoch observations of half the sky in just 3 bands,
to current projects like Pan-STaRRS1, which provides imaging of
three-quarters of the sky in 5 filters but now at hundreds of epo-
chs. Including the time domain not only increases the storage and
computational requirements, but challenges the community with
the need for new algorithms and tools. Incredibly, we see that
astronomy is generating data at the same pace as experiments
in particle physics. This is extraordinary, considering that the
number of researchers and the worldwide financial investment is
much less in astronomy. Figure 1 clearly exhibits the necessity of
efficient data storage, data processing and data mining, which are
specific areas addressed by this project.

Typical research paths taken in the scientific exploitation of
large sky surveys are either construction of statistical samples of
objects or populations of interest (e.g., normal galaxies, quasars,
etc.) and their study (e.g., to probe their evolution, large-scale
structure, etc.), or selection of interesting targets (e.g., peculiar
galaxies, distant quasars, brown dwarfs, supernovae, etc.) for
follow-up observations. The scientific potential of such studies
is greatly enhanced by federating data sets (e.g., combining opti-
cal, infrared, and radio sky surveys), which often reveal important
features and populations of objects not easily distinguishable in
any of the data sets taken separately. For example, a typical VO
data enabled project would be a complete clustering and correla-
tion analysis of combined source catalogs, using a federation of

multi-wavelength data from several major astronomical surveys,
ranging from radio, through infrared, optical, UV, to X-ray, or even
γ -ray. Data federation of the source catalogs from these surveys
generally results in a parameter space of 108 − 109 data vectors
in ∼ 102 − 103 dimensions. The existing tools and algorithms
do not scale well to such hyper-dimensional data sets, so we must
assemble, test, improve, and deploy the necessary data mining,
statistical, and visualization tools for this exploration. Concur-
rently, we must develop the necessary computational and network
infrastructure and human expertise to develop, implement, and
utilize these tools. Examples of specific challenges will be pre-
sented later in this paper.

Figure 1 – The rapid increase of astronomical data, considering only the most
important optical surveys carried out in the past 20 years. For comparison we
show the data rate from the Large Hadron Collider experiment at CERN (for de-
tails see http://lhc.web.cern.ch/lhc/).

The main objective of the BRAVO@INPE project is to ad-
dress these strategic issues. More specifically, this project in-
tends to generate investment in information technology, with par-
ticular emphasis on Computational Infrastructure, Data Grid, Data
Processing, and Data Mining. We present not only a brief history
of what has been done in the recent past but also elucidate the
specific needs for the near future. This effort aims to prepare the
Brazilian astronomical community for the avalanche of data and
massive data processing needs that are a reality now, and which
will increase rapidly in the coming years with the advent of the
large telescopes and surveys currently under development (GMT,
TMT; LSST, Pan-STaRRS, VISTA, VST).

This paper is organized as follows: section 2 outlines the
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general concept of the Virtual Observatory, establishing a context
for the more specific components described later. Section 3 des-
cribes the initial stages taken in generating a roadmap for the VO
in Brazil, while section 4 introduces two of the basic elements of
any VO: computational infrastructure and databases. The funda-
mental concepts of data grids and processing grids are presented
in section 5. Section 6 describes an image processing pipeline
developed by our group, 2DPHOT, and the main characteristics of
the Astro-Wise environment. Section 7 provides an overview of
the ongoing developments within Brazil in terms of astrophysical
applications. Section 8 reviews data mining and describes spe-
cific projects we are undertaking in this field. Section 9 focuses
on the four main areas in which we plan to invest resources, while
section 10 summarizes the BRAVO@INPE project.

2 THE VO CONCEPT

For more than two decades, the international astronomical com-
munity has witnessed an exponentially growing capacity for ac-
cumulating astronomical data. Today, information is gathered
in large surveys from the ground and from space, covering vir-
tually the entire electromagnetic spectrum, from X-rays through
the ultraviolet, optical, infrared, and beyond. Individual projects
yield complementary data through specific, targeted scientific
programs. Much of these data are made available to the commu-
nity through public servers, usually in several different formats,
and distributed at many institutions. The data quality, metadata,
interfaces, and accessibility are heterogeneous, since each project
typically curates its own data, presents it in a custom database,
and even data formats in astronomy are instrument dependent
with little effort made to unify them.

An underlying concept of the VO is that by providing improved
and homogenized data access combined with the tools to mani-
pulate and explore the data, the need for new observations will be
reduced even as the scientific output is increased. All gathered
data can be accessed via the VO, enriching the international com-
munity. Large surveys would take precedence over individual,
targeted observations, providing added coherence to the VO
structure. Therefore, the VO is not an enterprise driven by a single
institute or even one country. It is rather a community endeavor
aimed at the democratization of information that will certainly ex-
pand to other scientific areas like meteorology, geophysics and
space science, allowing new interactions and the exchange of
methods and technology. Thus, the VO today represents to the
astronomical community what the Internet was for the academic
world in the 1980s. It is clear today that science, especially in

developing countries, would be shockingly different without the
Internet in the same way that we envisage in the future saying that
astronomy would not be the same without the VO.

The Virtual Observatory (VO) concept is the astronomical
community’s response to the scientific and technological challen-
ges posed by massive and complex data sets. At its heart, the VO
is a set of standards – metadata (data describing data), interope-
rability, and other minimum requirements to be a VO-compliant
database [11]. Such standards allow the development of VO tools
that can then be deployed to operate on any VO compliant data
set. Disparate surveys and individual observers’ programs can
thus be federated, queried, and manipulated by a single tool.
Achieving these basic goals is not simple. To exemplify the
obstacles to dealing with a modestly large amount of data, its
complexity, and the challenge of processing it over a reasona-
ble timescale, we examined the re-processing of reduced galaxy
images from the seventh and final data release from the Sloan
Digital Sky Survey (SDSS DR7). These data cover ∼8400 square
degrees on the sky and provide images in five bands. We consider
only the re-measurement of photometric parameters using a cus-
tom pipeline (described later) – not the reprocessing of raw data
to calibrated images, and ignore the spectroscopic data entirely.
Even for this modest task, if we want to process the imaging data
in only one band, in one week, we would need 6577 processors,
which is a factor of 15 more computing power than everything cur-
rently available to Brazilian astronomers. We use a timescale of
one week as an upper limit for what a user would accept to retrieve
important information from such a large data set – and this data
set is almost trivial compared to upcoming surveys.

Computational hardware requirements are just one small part
of the issues that arise when dealing with such vast data sets.
Processing takes a lot of time, so once completed, it is of para-
mount importance that querying and retrieving data be done quic-
kly. This requires investment not only in database software, but
the astronomical and computational expertise to design and im-
plement efficient and scientifically useful data models. This infor-
mation, once structured in such a database, needs to be retrieved
efficiently, demanding high-speed internet connections to which
most research centers in Brazil do not have access. For these
reasons, our top priorities include implementing grid computing
to enable the processing of massive data sets; creating a dedicated
network for astronomy to enable access to the resulting data, and
training astronomers and computer scientists to develop these
tools to produce cutting-edge science. Figure 2 summarizes this
critical situation.
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Figure 2 – The complexity of implementing a VO structure considering all the infrastructural elements and addressing the demands of the
astronomical community. The needs expand rapidly and will grow beyond the computational resources currently available, especially in Brazil.

Nevertheless, many VO compliant databases and tools have
already been developed. DS9, a commonly used astronomical
image viewer, can communicate with databases using VO proto-
cols. The European Southern Observatory has developed VirGO,
a visual tool that allows both amateur and professional astro-
nomers to search for available data in any part of the sky using
planetarium-style software, and then retrieve data based on user
supplied constraints. The US Virtual Observatory provides tools
to convert ASCII tables to VOTable format, search multiple data-
bases around a given position with one query, cross-match ob-
jects across databases, and more. One thing is clear – while the
VO today provides standards and tools to find and extract data,
few VO compliant tools exist to analyze the data. As we describe,
the Brazilian contribution to the VO will focus on deployment of
such resources.

3 THE STATUS OF INFORMATION AND COMMUNICA-
TION TECHNOLOGIES (ICT) IN BRAZIL

The new era of large data sets and the co-requisite data processing
needs led to the recognition two years ago that we must moder-
nize the tools for astrophysics in Brazil. In addition to the large
photometric and spectroscopic surveys being carried out in both

hemispheres, Brazil has committed significant resources to new
facilities (including SOAR, Gemini, BDA, etc). As a result, we have
access to extraordinary amounts of data in all portions of the elec-
tromagnetic spectrum, but without standard techniques for sto-
rage, retrieval, distribution, processing or analysis. Thus, the un-
derlying concept of BRAVO@INPE is to federate these resources,
using a common framework, standard interfaces, computational
infrastructure and analysis tools. BRAVO@INPE is a branch of
BRAVO, which is part of INCT. BRAVO comprises a committee in
charge of planning VO activity in Brazil, with branches located at
various universities and institutes (e.g. BRAVO@IAG at Univ. of
São Paulo, BRAVO@ON at Observatório Nacional). BRAVO or-
chestrates and coordinates the specific developments at different
branches.

All of these developments are embraced within the concept
of Information and Communication Technologies, encompassing
all means for processing and communicating information. ICT
is often used to describe digital technologies including methods
for communication, transmission techniques, communications
equipment, and techniques for storing and processing informa-
tion. The term has gained popularity partially due to the conver-
gence of information technology (IT) and telecom technology.
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Before embarking on a major enterprise to develop
BRAVO@INPE, we must understand our current hard-
ware/software/personnel resources and their ability to meet our
needs both today and in the future. The partners in this pro-
ject are the thirty-one institutes comprising the INCT-Astronomy
(National Institute for Science & Technology) recently created by
the MCT (Ministry of Science & Technology). The central repo-
sitory of knowledge about computational hardware, software and
personnel in BRAVO@INPE will be the BNPGA (Brazilian Network
for Processing Grid in Astronomy). Appendix A lists the institu-
tes that will compose the BNPGA and their representatives. This
new program will allow us to trace the roadmap of what is really
needed for the future.

We have performed an initial census of the capabilities of the
INCT-Astronomy member institutes. Here we provide a brief sy-
nopsis of the results; the complete list of questions and results
can be found in Appendix B. We find that most users of our com-
munity have access to at least a desktop computer with moderate
computational capacity. This conclusion must be seen with cau-
tion, as many members of our community use data of low com-
plexity and in small volumes. This situation is changing drama-
tically with the next generation of large surveys and telescopes.
In this context, the current computational facilities may be ade-
quate today, but it is clear that the current cyber-infrastructure
will be obsolete when dealing with the extremely large amount
of data coming from both stellar and extragalactic projects.

These new programs will often require large computing clus-
ters. We examined access to modern servers with more than 8
processors each (Class A) and to beowulf types, composed of
mono-processed nodes and internal networks of 100 Mbps (Class
B). Only 12 out of the 20 institutes that responded have access to a
cluster and only 7 out of these 12 have access to a Class A cluster.
It is important to note that in some cases the clusters are shared
with researchers from different disciplines like Physics since the
small groups of researchers developing Astronomy in Brazil are
contained within large Physics departments.

Adding up all the available processors in the different clusters
gives, in principle, the total number of processors available for
grid processing (see Appendix B, Table 4). This total, 419, is only
6% of the required number to processing the entire SDSS DR7 in
one band, in one week, for example. This is only a crude estimate
considering that all the processors are different, some better than
others – fifty are old types of processors that would add little to the
total processing capacity. It is to be noted that modern surveys like
Pan-STaRRS use a single 512-node cluster with the latest 3+GHz
processors to analyze their data – more powerful than all of the

Brazilian astronomical community’s computers combined.
Beyond processing power, the total disk storage available to

our clusters is approximately 45TB. While this satisfies the needs
of individual groups, it is clearly incompatible with the needs of
the coming decade where telescopes will produce data at a rate of
2 PB/year. Moving any fraction of such data quantities also requi-
res high-speed network connections, which many of our institu-
tions still do not have.

The results of this census demonstrate the extreme defici-
ency of the current hardware, software and network infrastructure
in Brazil. An often overlooked (and underfunded) aspect of any
computational project is the need for personnel with expertise in
all aspects of the program. In BRAVO@INPE, we cannot expect
a computer scientist with experience in commercial database ap-
plications to understand and implement astronomical databases
without new training. Similarly, we would not expect an astrono-
mer to develop efficient computational algorithms for, say, clus-
tering analysis, without learning about recent advances in such
applications.

To address some of these issues, we organized two workshops
in 2007 at INPE where formal presentations were given by a
number of researchers from around the world engaged in e-
science. At the second workshop we had specific presentati-
ons by researchers from Brazil engaged in VO-related projects,
showing the tremendous potential that we have to actively par-
ticipate in this international effort (see www.ivoa.net). For more
information and access to the presentations of the lectures see
www.lac.inpe.br/projetos/bravo/. A major component of this pro-
ject will be the training of technical staff, which is of paramount
importance for us. We have already begun a program of visits
by Brazilian astronomers and computer scientists to foreign ins-
titutions with extensive astronomy database involvement, inclu-
ding Caltech, Johns Hopkins University, and the Institute for
Astronomy in Hawaii. The recent inclusion of BRAVO within the
IVOA will help increase the interaction with other foreign groups.

4 DATABASE DEVELOPMENT AND BASIC
INFRASTRUCTURE

Many scientists view databases as simply a form of data storage.
Perhaps you could do simple computations on columns on your
personal computer and output the results. Typical tables might
have tens to thousands of entries. Even a large food market has
only about 50,000 different items available – and we are temp-
ted to imagine that their warehouse database must be large and
complex. We would be very wrong.

Journal of Computational Interdisciplinary Sciences, Vol. 1(3), 2010



“main” — 2010/5/7 — 16:53 — page 192 — #6

192 THE BRAZILIAN VIRTUAL OBSERVATORY – A NEW PARADIGM FOR ASTRONOMY

Astronomical data sets have far surpassed the largest com-
mercial databases in size and complexity. Almost twenty years
ago the Digitized Second Palomar Observatory Sky Survey [6]
database contained over 100 million objects, measured in three
bands, with a total of 100 properties per object. Information
about the survey (calibration, plate metadata, related CCD ima-
ging, classification schemes) was spread over ∼50 different ta-
bles. Information from these tables often had to be joined (such
as calibration and raw fluxes) to yield scientifically meaningful
data. This database never became easily accessible to the pu-
blic, which would have required the creation of an added layer of
interfaces and query tools.

The current gold standard of databases in astronomy is the
Sloan Digital Sky Survey. The imaging catalog has almost half a
billion objects, in five filters, with nearly 500 columns of data on
each object. While the volume of this single table (many TB) is
itself daunting, the SDSS database has nearly 100 unique tables,
with an additional 50 views offering easy access to scientifically
useful subsets of specific tables. The complexity of this database
required years of consideration to design a workable schema, de-
cide on which columns to generate indices to speed up queries,
understand how to load and update tables with new data, and
how to provide public access. Just writing a portion of the table
documentation was a full time job for a postdoctoral researcher for
almost two years. Beyond the nearly 20TB of catalog data, SDSS
also allows users to access a comparable volume of images.

While the SDSS is quite complicated for an astronomical
database, it pales in comparison to those from next-generation
projects. Upcoming surveys such as Pan-STaRRS and LSST will
yield a comparable amount of data – every time they survey the
sky. These projects will create a new SDSS every few months.
Not only do they produce multi-filter imaging, which must be
processed, cataloged, stored, and distributed, they will also pro-
duce time series data. Every object detected in one image must
be matched to its corresponding detection in all earlier images of
that same area. Optimal methods for differencing images must
be developed to look for astronomical sources that vary or move.
An entire pipeline is necessary to take moving objects, find them
at different locations in images taken at different times, associate
them, and generate orbits. Light curves for both stationary and
moving objects must be created. All of this must be done almost
instantaneously, because rare, one-time events such as superno-
vae must be found and notifications for follow-up observations
disseminated before they fade. This means processing one giga-
pixel image every minute. The resulting database is correspon-

dingly more difficult to model and populate. A static sky database
must be created with everything detected, and updated as repeated
observations allow for the creation of ever deeper images. Varia-
ble and moving objects must have all of their detections stored so
that light curves and orbits can be derived.

The evolution of these surveys vividly demonstrates that we
must contend with a new paradigm in astronomy. We must have
the resources to store, disseminate and access large databases.
We must have the knowledge of how such databases are struc-
tured, and how we can develop our own tools to create novel
science. We must have our own databases for Brazilian pro-
grams, and enable interoperability with VO tools to maximize
their scientific potential. We must also remember that so far we
have only discussed large optical surveys. Multi-wavelength and
multi-epoch studies demand new tools to cross-identify sour-
ces observed across the electromagnetic spectrum, with different
spatial and time resolutions. This fundamental problem too has
been approached but is far from solved. In all of these arenas,
Brazil has much to learn, but also much to contribute.

5 DATA GRID & PROCESSING GRID

We are in the midst of a revolution in data gathering that encom-
passes all realms of science. In particular, the volume of data
in astronomy, both real and simulated, is growing exponentially.
The need for tools to analyze these data is naturally creating a new
branch of scientific investigation – data science. There are many
challenges in this emerging enterprise. We must have methods
for extracting knowledge from large amounts of data, which by it-
self is non-trivial. What is important and what is noise? Which
correlations are fundamental and which are secondary? In addi-
tion, we must urgently develop the skills and tools for processing
these data. These requirements are already being addressed by
two areas of computer science: data mining and high performance
computing (HPC). We discuss the former in Section 8; here we
will focus on the latter.

There are many approaches to HPC. The first one used paral-
lel machines – vector machines, multi-processing machines with
shared memory, multi-processing machines with distributed me-
mory, and more recently multi-core processing chips. These solu-
tions aimed to improve the processing capacity of a single, central
machine. By the late 1990s, a form of distributed computing was
created, using internet connections among geographically distri-
buted processors to spread the computational labor. This is the
underlying concept of grid computing, where processors across
a city, country, or the whole world can be utilized by a single pro-
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gram. This type of grid is a new environment for science in the cur-
rent century. We should note that a computing grid is not properly
a HPC implementation. This concept (HPC) is typically reserved
for enhancing the performance of a single system. However, grid
computing is one of the strategies for addressing the need for
intensive computation.

There are many types of grids and generally they can be clas-
sified according to:

• the nature of the processing: data grid or processing grid;

• he focus of the processing: open vs. closed or general vs.
dedicated;

• the hardware components: homogeneous or heterogene-
ous.

Since the accumulation rate of data in astronomy is already
reaching an unprecedented level of 10 PB/year, it is becoming
difficult, technically and financially, to centrally store all of the
data, and impossible to replicate data for personal use. A data
grid provides an environment for distributing, sharing, and mo-
difying large amounts of data. We find applications for such a
grid in different fields, such as meteorology. Examples include
the Earth System Grid (http://www.earthsystemgrid.org/) and Seg-
Grid (http://seghidro.lsd.ufcg.edu.br/). In astronomy, the Mon-
tage software platform (http://montage.ipac.caltech.edu) has been
prepared to run in a grid environment. Many other astronomical
tools have been or are being ported to grid applications [2, 36].

Similarly, increasingly large and complex processing tasks
are required to process and analyze these data sets, or to gene-
rate large simulations. A processing grid addresses these issues.
Collaborative processing is a type of application that exempli-
fies this new technology. The SETI@home project (Search for
Extra-Terrestrial Intelligence, http://setiathome.ssl.berkeley.edu/)
was the first popular distributed computing project, and now
has over 3 million users, hosted by the Space Sciences Labo-
ratory (University of California, USA). It is only one of 50 such
projects using the BOINC volunteer and grid computing plat-
form (http://boinc.berkeley.edu/). The Large Hadron Collider
(LHC) has developed an enormous computing grid joining 170
computing centers in 24 countries (http://lcg.web.cern.ch/lcg/).
Processing grids in other fields include protein folding
(http://folding.stanford.edu/), climate change
(http://www.climateprediction.net/), and seasonal mesoscale
climate prediction GBRAMS
(http://www.cptec.inpe.br/brams/gbrams.shtml) and RECLIRS

(http://yule.lacesm.ufsm.br/nucleus332/). Numerous online
directories of grid computing projects
(http://www.gridcomputing.com, for instance) provide lists of
dozens to hundreds of grid projects (commercial and scientific),
environments, and applications.

Thus, it is imperative that we take advantage of the computing
resources available at different computer centers linked by fast
network connections. This could take the form of our own, inter-
nally developed grid implementation, or the installation and de-
ployment of existing tools such as BOINC. Today, Brazilian users
contribute almost 10 Teraflops of computing power to BOINC pro-
jects, the highest in South America. One of the main goals of
BRAVO@INPE is to create a processing grid to harness acade-
mic computing along with this private processing power, with ini-
tial focus on two specific astrophysical applications: image pro-
cessing with 2DPHOT (described in Section 6.1); and analysis of
cosmological simulations with hundreds of millions of particles
using the FoF algorithm (described in Section 7.2).

Our team is currently strongly committed to the use of grid
technologies and web services within the VO context. Specifically,
our focus is data modeling, within the scope of BRAVO@INPE, to
develop a framework for the metadata describing both observed
and simulated data. We examine the logical relationships between
these metadata, with the intent of establishing a general architec-
ture for retrieving, processing, and interpreting data from diffe-
rent branches of spatial science and in particular from astronomy.
This is an important step for constructing protocols that will guide
VO applications.

6 DATA PROCESSING

As described above, critical issues in VO development include
the large amount of data and how it is to be processed – transfor-
med from raw images to reduced data suitable for further analy-
sis. Here, we describe two concrete steps to address these pro-
blems undertaken in Brazil: the installation and operation of the
first Astro-Wise (AW) node in South America and the insertion of
our photometry environment (2DPHOT) into AW.

6.1 2DPHOT

2DPHOT is an automated tool to derive both integrated and
surface photometry of galaxies in an image, to perform reliable
star/galaxy separation with accurate estimates of contamination
at faint fluxes, and to estimate the completeness of the resulting
catalog. A 2DPHOT graphical user interface (2DGUI) is also under
development, allowing the user to easily set 2DPHOT input opti-

Journal of Computational Interdisciplinary Sciences, Vol. 1(3), 2010



“main” — 2010/5/7 — 16:53 — page 194 — #8

194 THE BRAZILIAN VIRTUAL OBSERVATORY – A NEW PARADIGM FOR ASTRONOMY

Figure 3 – Schematic representation of the 2DPHOT environment.

ons and detection parameters. More details can be found in [20].
We show a schematic representation of the 2DPHOT environment
in Figure 3.

The main tasks of 2DPHOT are:

• Producing a cleaned catalog of the image.

• Performing reliable star/galaxy classification.

• Estimating the completeness of the galaxy catalog and the
contamination due to star/galaxy misclassification.

• Constructing an accurate model of the Point Spread Func-
tion (PSF) of the input image, taking into account possible
spatial variations of the PSF as well as deviations of stellar
isophotes from circularity.

• Deriving structural parameters of galaxies by fitting ga-
laxy images with two-dimensional PSF-convolved Sérsic
models.

• Measuring galaxy isophotes by fitting them with Fourier-
expanded ellipses, and deriving one-dimensional surface
brightness profiles of galaxies.

• Measuring the growth curve of seeing corrected aperture
magnitudes for galaxies.

The image analysis flow of 2DPHOT is presented in Figure 4.
2DPHOT is being utilized by several projects conducted by resear-
chers within and outside of BRAVO. In a spectroscopic and photo-
metric study of a rich cluster at intermediate redshift, it is used to

measure global properties of cluster galaxies [26]; it is also used
in a fundamental plane study based on SDSS and UKIDSS data
[21]. The analysis of internal color gradients in early-type sys-
tems has been recently published in [23]. We also used 2DPHOT
in a recent study of Fossil Groups [22]. We have also begun a
large-scale study (SPIDER; Spheroids Panchromatic Investiga-
tion in Different Environment Regime) of the general properties of
early-type galaxies (ETGs) combining SDSS and UKIDSS data.
This project makes extensive use of 2DPHOT to properly measure
the seeing corrected structural parameters for nearly 40,000 ETGs.

Figure 4 – Image Analysis flow of 2DPHOT.
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6.2 Astro-Wise

2DPHOT is only a starting point in preparation for the avalanche
of data in the next few decades. 2DPHOT requires as input an al-
ready processed image. Thus, we must be able to process raw
images either on an individual basis or in a pipeline. To do so,
we are taking advantage of the Astro-Wise (AW) system, develo-
ped by a consortium of European astronomy research institutes.
The AW environment consists of hardware and software federated
over five institutes in Europe, designed to scientifically exploit the
increasing amount of data produced by experiments in different
fields. AW is a general information system which was initially ge-
ared towards astronomy, but is now also used in other branches
of science. This is an essential trait of AW in the context of a uni-
fied environment for data processing at INPE. It allows a user to
archive raw data, calibrate data, and perform post-calibration sci-
entific analysis. All results are stored in a single environment that
links together all of the discrete steps performed when analyzing
a data set. This complete linkage, including the input, output, and
software code used to derive one from the other, for arbitrary data
volumes, has only been feasible thanks to a novel paradigm devi-
sed by the creators of AW. The algorithms included in the software
have been developed to include arbitrary optical wide field ima-
gers. This aspect is of major importance for BRAVO@INPE, since
we will be developing software that enables us to ingest data from
instruments available at SOAR and in the future from LSST.

AW was designed and implemented as a fully scalable and
distributed information system to properly handle the huge
amount of data that will be produced by large area surveys in the
near future. By allowing the end-user to trace the data products,
following all dependencies from the final catalog back to the raw
data, it becomes possible to re-derive the result with better cali-
bration and/or improved analysis tools. This represents perhaps
the first time that astronomers could truly reproduce each others
results.

To achieve these goals, AW includes structural functions that
allow for storing data models along with data, in distributed data-
bases [38]. It contains a file server that can access these databases
along with the image data, and a processing grid that can utilize
parallel clusters while retrieving and storing input and output in
the databases. AW is fully scalable so that it can accommodate
large and small projects and can work with data from any ima-
ging camera. Adding new analysis code is simple, allowing users
to deploy their own tools on the compute clusters accessible to
AW. These properties mean that AW overcomes the limitations of
traditional analysis tools, which typically reside on a user’s own

computer or cluster. Reduction processes would usually be run by
a single user, and saving sufficient metadata to reproduce every
step is up to that individual. These behaviors are simply not suf-
ficient for the new data volumes, collaborations and complexity
in modern astronomy. Hundreds of terabytes of data will start en-
tering the system when SOAR starts operating with the complete
suite of planned instruments.

7 DATA ANALYSIS

The processing of raw data from a telescope into images, spec-
tra or other products suitable for further analysis is only the first
computationally intensive step on the path from photons to sci-
ence. The processed data must be analyzed to detect, classify and
characterize individual objects and groups of objects, and obtain
physically meaningful measurements.

Within BRAVO@INPE, we are focusing on a few distinct data
analysis projects:

• Implementation of a decision tree for star/galaxy separa-
tion in the faint magnitude regime for wide field images;

• Development of a parallelized Friends-of-Friends (FoF)
algorithm, with application to galaxy catalogs from the
SDSS Stripe 82 project
(http://www.sdss.org/drsn1/DRSN1 data release.html)

• Automatic morphological analysis of images in Stripe 82
using both traditional tools for structural parameter esti-
mation (e.g. concentration/ asymmetry, [15]) and advan-
ced methods for image analysis such as the Euler charac-
teristic and gradient spectral analysis [31].

• Development of a cluster finding algorithm using Voronoi
Tessellation, but considering a more realistic background
distribution instead of the usual Poissonian assumption.
Preliminary results were presented in [34].

• Virial analysis of galaxy clusters, allowing us to measure
the most important dynamical quantities including total
mass, based on the gapper technique described below.

7.1 Decision Tree (DT)

A decision tree is a computational method for splitting data into
distinct classes, either based on pre-existing knowledge of the
subgroups (supervised) or on inherent characteristics (unsuper-
vised). Let a data set be described by a collection of attributes
for each object in the data set. Each attribute is a measurement
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of some characteristic of an object (such as magnitude or size).
These objects could belong to different classes or clusters (such
as stars and galaxies). Imagine a data set for training, where the
class of each object is already known. Our task is to develop a
classification rule to determine the class of an object based on
its various attributes. If two objects have the same attributes, but
they belong to different classes, then it is impossible to separate
these objects based on this set of attributes. In this case, the data
set with these attributes is not appropriate for a training set for
the induction task. Thus, we must also determine the appropriate
attributes to separate the objects into the desired classes.

Unlike other techniques for clustering analysis, the DT does
not rely on distance metrics but instead makes a series of bran-
ching decisions based solely on numerical values of the attribu-
tes. A DT is a simple structure, where the final leaves define to
which cluster an object with a specific set of attributes belongs.
The nodes represent tests on a given attribute, with a branch for
each possible output. For classifying an object, the starting point
is the root of the tree; a test is applied to one attribute and the
appropriate output branch is determined. The process is repeated
using other attributes until the last leaf. Therefore, the object will
belong to the cluster represented by that leaf.

There are many induction algorithms for decision trees. The
ID3 algorithm, developed by [28], is the most popular. The algo-
rithm was improved, allowing continuous parameters [29]. A pac-
kage called WEKA (Waikato Environment for Knowledge Analy-
sis) has been developed where several standard machine learning
techniques were incorporated into a “workbench”. Several deci-
sion trees were designed for classifying objects detected in the
SDSS (Sloan Digital Sky Survey) data for 5 passbands (u, g, r,
i, z), employing WEKA (see [32, 35];). Our main goal is to pro-
vide a VO service to deal generally with the problem of star-galaxy
separation – for any training set provided by the user, allow the
generation of an appropriate DT using different methods and
cross-validate the final obtained trees.

7.2 Parallel Friend-of-Friends Algorithms

The friend-of-friends (FoF) algorithm is commonly used to join
galaxies within a linking volume around each galaxy. This method
has several attractive features, like being independent of the par-
ticular geometry of the galaxy distribution. For a given linking
volume a unique group catalog is defined. One of the main pro-
blems in using this algorithm is the time it takes to process large
numbers of objects, scaling with N2 log N. It is necessary to we-
aken this dependence on the total number of objects and thus be

able to treat the hundreds of millions of particles found in current
large cosmological simulations.

First experiments on reducing the dependence on N have
shown that after a domain decomposition (subdividing the data
in redshift shells) combined with a post-processing step we have
already reduced the scaling to N log N2, a considerable improve-
ment. A simple domain decomposition can be implemented in a
purely parallel manner, but it is insufficient because some objects
artificially separated by sub-domain boundaries could in reality
belong to the same group. Therefore, a post-processing proce-
dure is applied to examine objects close to a boundary but with a
valid friend in an adjacent sub-domain. Our parallel version has
fully reproduced previous results [5] for computing the potential
gravitational energy spectrum for galaxies and clusters of galaxies
at many redshifts. A VO service will be made available allowing
the user to run the FoF algorithm over the most important cosmo-
logical simulations available to date as well as those inputed by
the user.

7.3 Advanced Tools for Morphological Analysis

As spatial information becomes ever more accessible through
high resolution digital images, the need for robust techniques for
complex pattern characterization is obvious. An obvious exam-
ple is the mathematical description of galaxy images. Consi-
derable attention has been paid to morphological classification
of E/SO/Sa/Sab/Sm/Irr galaxy morphologies using Sloan Digital
Sky Survey imaging. The data to be analyzed usually are (1) sky-
subtracted, cleaned and log scaled g-band images; (2) filtered-
enhanced versions of the g-band images; (3) the corresponding
RGB composite images; and (4) a set of measured parameters, in-
cluding surface brightness, position angle, ellipticity and spectral
coefficients. In this sense, some useful mathematical and statis-
tical approaches have been proposed (e.g. [25]) to estimate the
CAS (concentration, asymmetry and clumpiness) structural para-
meters. Motivated by the data analysis challenges in the context
of BRAVO@INPE, we have developed an alternative and comple-
mentary approach for characterization of inhomogeneity and ra-
dial asymmetry in galaxy images. Inhomogeneity is calculated
using the Euler characteristic from the Minkowski functional. Ra-
dial asymmetry is obtained by applying gradient pattern analysis
to 2D wavelet multi-resolution samples of the image. The combi-
nation of both structural characteristics is proposed as an effective
measurement for galaxy morphology. The main objective here is
to implement a VO service to deal with morphological analysis in
general and in particular to analyze the entire SDSS (DR7) and
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explore the relationships between morphology and stellar popu-
lation parameters, for instance.

7.4 A Modified Voronoi Tesselation Code to Search for
Clusters of Galaxies

We are currently developing a cluster finder algorithm in 2+1
dimensions based on Voronoi tesselation (VT). The method is
non-parametric and does not smooth the data, making the de-
tection independent of the cluster shape. It uses all of the avai-
lable galaxies, going as far down the luminosity function as the
input catalog permits. It does not rely on the existence of featu-
res such as a unique brightest cluster galaxy or a tight ridgeline in
color-magnitude space. It works in shells of redshift, treating each
shell as an independent 2-dimensional distribution of galaxies.
The core of the VT algorithm is the background above which an
overdensity must rise to be identified as a cluster. In contrast to
earlier implementations of the VT algorithm, we do not assume
a Poissonian background. We use a more realistic assumption
that the angular two-point correlation function of the background
distribution has a power-law shape, similar to what is actually
observed. In a given redshift shell, we build a Voronoi diagram
and compare the distribution of cell areas with the distribution ex-
pected from a background-dominated eld. We set as a threshold
the cell size below which the distribution starts to increase faster
than its background counterpart. The clumps of contiguous cells
found with density significantly above their respective cells are
flagged as potential clusters.

The Voronoi diagram of a 2-dimensional distribution of
points is a unique, non-arbitrary and non-parametric fragmenta-
tion of the area into polygons. A simple pseudo-algorithm to per-
form such fragmentation is the following: starting from any point
P1, we label its nearest neighbor P2 and follow the perpendicular
bisector between those points. We stop when we reach the first
point Q1 on this bisector that is equidistant from P1, P2 and a
third data point P3. We now walk along the perpendicular bisec-
tor between P1 and P3 until we reach the point Q2 and identify the
next point P4 by the same criterion. Successive repetition of this
process will eventually bring us back to Q1 after a finite number
of steps, creating a polygonal shape, the Voronoi cell, enclosing
P1 and having vertices at the points Qi. By repeating this process
for each point Pi (every galaxy in the redshift shell) we will have
built the VT corresponding to this field. An example is shown
in Figure 5, which plots the distribution of galaxies on the sky
(black dots) along with the Voronoi cells surrounding each
galaxy. There are several robust and efficient computational al-

gorithms to build a Voronoi diagram from a given distribution.
In our code we use the so-called divide-and-conquer algorithm
implemented in the Triangle library [33].

There are no arbitrary parameters in constructing the VT for
a given data set. Cells will be smaller in the high-density re-
gions and since each cell contains one and only one point, the
inverse of the cell area gives the local density. The VT cluster
finder takes advantage of this fact in the process of detection. We
plan to implement a VO service where the user can input a galaxy
catalog over a given area of the sky and receive a cluster catalog
as output.

Figure 5 – Diagram showing how Voronoi cells are constructed and a galaxy
distribution on the sky with its corresponding tesselation.

7.5 The Virial Analysis Tool for Understanding Cluster
Dynamics

Removal of interlopers and proper selection of galaxy cluster
members is an essential step in the dynamical modeling of clus-
ters and investigations of environmental effects affecting bound
galaxies. There are several different approaches for interloper re-
moval available in the literature. A recent comparison of the per-
formance of many different methods applied to N-body cosmolo-
gical simulations is given by [39]. In particular, they found that
differences in mass estimates may be explained by the number of
interlopers a given method selects or rejects. These could also
explain the discrepant estimates from other methods of mass es-
timation (e.g., based on X-ray observations or lensing analysis).
The shifting gapper method has two main advantages: (i) it is ba-
sed on combined information for both position and velocity; (ii) it
is independent of any hypotheses regarding the dynamical state of
the cluster. The procedure we consider is similar to the approach
adopted by [8]. The input data consists of the radial and velocity
offsets of each galaxy from the cluster center, being visualized as
a phase-space diagram. It works through the application of the
gap technique [18, 27] in radial bins from the cluster center. This
technique is used to identify gaps in the redshift distribution, re-
sulting in the identification of groups in z-space. The bin size we
consider for the shifting gapper is 0.60 Mpc or larger to force the

Journal of Computational Interdisciplinary Sciences, Vol. 1(3), 2010



“main” — 2010/5/7 — 16:53 — page 198 — #12

198 THE BRAZILIAN VIRTUAL OBSERVATORY – A NEW PARADIGM FOR ASTRONOMY

selection of at least 15 galaxies (consistent with [8]). Galaxies
not associated with the main body of the cluster are eliminated.
This procedure is repeated until the number of cluster members
is stable (no more galaxies are rejected as interlopers). After a fi-
nal list of members is reached, they can be used to measure the
cluster velocity dispersion, from which we can estimate the clus-
ter mass through virial analysis. While other procedures are ba-
sed on physical assumptions about the cluster mass profile, the
shifting gapper makes no physical hypotheses about the cluster’s
dynamical state. Further details of this method can be found in
[24]. This technique will be integrated in the VO service descri-
bed in the previous subsection and will allow the user to carry out
a dynamical analysis for the clusters detected with VT and having
sufficient redshift measurements.

All of the applications described here already exist or are
close to completion. However, they have not yet been deployed
as VO-compliant tools. To accomplish this goal we must first
implement the foundational concepts of the VO – network infras-
tructure, grid processing, and most importantly interoperability
which is still lacking in the Brazilian astronomical panorama.

8 DATA MINING

After the completion of image processing and derivation of mea-
ningful quantities through data analysis, we are now confronted
with an enormous collection of numerical quantities describing
our data. An extant example is SDSS imaging, with 500 mil-
lion objects, each with nearly 500 measured attributes. Which of
these parameters are connected to fundamental physical proper-
ties? How do different types of objects cluster in high-dimensional
parameter spaces? How do we find rare classes of objects, es-
pecially in the presence of errors or catastrophic mismeasure-
ments? The 21st century will be a period of data-driven science,
with the development of techniques to uncover the hidden kno-
wledge in these kinds of massive data sets. This is the primary
concern of a long standing branch of computer science – data
mining (DM) – that has been applied extensively to astronomical
data. It embraces a set of techniques for dealing with classifica-
tion (neural networks [3, 13], decision trees [28, 29], clustering
analysis [12, 19], visualization [30, 14, 40, 37], pattern recog-
nition [17, 4]) and statistical analysis of massive data sets with
extremely high dimensionality [7, 9]. However, astronomers have
yet to implement many of these techniques in easily accessible,
cross-database tools. The incredible dimensionality and comple-
xity of astronomical data also challenges conventional implemen-
tations of these algorithms [16].

In the space science domain, although there are extensive ar-
chival data resources available over the web, the ability of sci-
entists to access and analyze this content is becoming more and
more limited. The large data volumes cannot be moved to a perso-
nal workstation to be processed by an individual’s own software,
while the software cannot be easily placed on the data host. Thus,
DM in the context of this project refers to specific computational
methodologies, working in a logical system, to extract informa-
tion and find hidden patterns embedded in the large amounts of
data from space science surveys. Generally speaking, any com-
putational methodological tool performed to transform data into
information is called a Data Mining System (DMS). It is notable
that in space science (astronomy, astrophysics, cosmology and
solar system studies) many existing data archives are unsuitable
for DM because key pieces of metadata are missing. Hence, our
goal in the first part of this project is to outline the major compo-
nents of such a DMS, logically connected to the data processing
and data grid requirements described previously.

9 A NEW ERA FOR BRAVO

In the past two years we have gained important experience and
knowledge of VO development, and our project was realigned to
be economically feasible. New collaborations were established
in all facets of our planned investment. Within the context of the
INCT-Astronomy, the priority is to devise a roadmap for the near
future to coherently invest in hardware and software that can meet
our researchers needs. BRAVO@INPE aims to create this synergy
and contribute in strategic areas of the global VO.

Below we list the main strategic points of this enterprise. We
emphasize that these are the overarching items defining this pro-
ject and can be seen as pillars of a consistent investment in VO.

9.1 Network Infrastructure

From the results of our IT census we see the level of insuffi-
ciency of the hardware used by the astronomical community in
Brazil, especially for astronomers located in smaller and more
isolated institutes. High speed and secure network connecti-
ons are of paramount importance not only for simple tasks in
our daily work but also for establishing a national grid proces-
sing facility, such as the one we are developing with the BNPGA.
The Brazilian National Research and Education Network (RNP)
has been enhancing the network infrastructure throughout Bra-
zil and has recently started the development of a plan to im-
prove network access within the astronomical community in Bra-
zil (see http://www.rnp.br/en/backbone/index.php). This is one
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of the main points of this project – to coordinate a study of the
current situation and establish a schedule for implementing a
modern network infrastructure for all institutes of astronomy in
the country.

9.2 Creating the BNPGA

The census we did within the INCT-Astronomy community in-
dicated that we need to both upgrade our network infrastructure
and invest in creating a Grid Processing facility that can meet
the growing demands of the astronomy community, not only be-
cause of the increase in the amount of data but also due to its
increasing complexity. The BNPGA is the response to commu-
nities need for processing a large amount of data and reliably
publishing the results in an environment meeting VO standards.
BNPGA will commence as an exercise of processing the entire
SDSS in one band; by doing so we will be able to implement
the environment before upgrading to more powerful clusters with
thousands of modern processors.

9.3 Astro-Wise as a national environment for data
reduction and analysis

Several pipelines were developed in recent years to address the
demands of large area surveys like SDSS. In these cases, users
do not have to worry about data reduction. However, more and
more sophisticated algorithms for object detection, star-galaxy
separation, photometric redshift estimates, morphological analy-
sis and other tasks are flourishing and there is an obvious need
for reprocessing data in some of these cases. As discussed above,
we are implementing AW (developed to be VO compliant) as the
environment for large amounts of data processing. Ours will be
the first AW node in South America, as it is currently extant only
in Europe in compliance with IVOA standards.

9.4 The Virtual Lab for Advanced Data Analysis
(VLADA)

The Virtual Laboratory for Advanced Data Analysis is a project ini-
tiated at the Lab for Computing and Applied Mathematics-INPE
which aims to provide a new virtual environment for scientific
analysis tools to extract statistical and physical information from
time series, images and hypercube data. Its preliminary version
consists of a PHP user interface through which the user can in-
put the data and receive specific measures characterizing the data
(statistical moments, power spectra, generalized dimensions, Eu-
ler characteristics, asymmetry coefficients, etc). In the context of
BRAVO@INPE, VLADA can be seen as a virtual tool box for data

analysis in general. VLADA will be made available as a VO service,
which will require high speed connectivity and a high performance
server. The project is being developed under the same umbrella as
BRAVO@INPE since the technical operational issues are similar.

In order to tackle all of these issues within BRAVO@INPE we
are planning to invest in personnel in three main categories. First,
the project includes a collaboration with computer scientists from
the Laboratory for Computing and Applied Mathematics at INPE
(LAC) who are mainly engaged in projects dedicated to data mi-
ning and database development. They will be the main personnel
involved in BRAVO@INPE making use of the large data sets acqui-
red in the upcoming decades and pursuing solutions to problems
astronomers will be facing in the Petabyte era. Second, LAC is re-
cruiting staff specializing in database management, web design,
and operating system management. They will be responsible for
keeping the VO services operational. Third, we will support gra-
duate students and postdocs involved in the project. They will be
developing their theses on subjects related to topics described in
Section 7.

10 SUMMARY

The Virtual Observatory is rapidly becoming a reality. The com-
bination of growing data volumes and data complexity, coupled
with computational and algorithmic advances, has made the VO a
necessity. We have described some of the ongoing projects to im-
plement databases, general-purpose computational algorithms,
grid networks, and other VO-enabling technologies in Brazil. A
common theme among all of these developments is the dire need
for computational resources (CPUs, storage and network), soft-
ware, and the expertise to design, install, and bring to life these
complex systems. The international nature of astronomy implies
that everyone can benefit and everyone should contribute to this
enterprise. We have described the specific contributions that the
Brazilian astronomical and computer science communities have
made and will be making to this effort. Our growing partnerships
in large telescopes and unfettered access to large public data
sets demands that we develop our own tools and expertise to
leverage these investments and strengthen our scientific output.
Finally, we have described the necessary next steps in terms of
hardware, software and personnel to advance BRAVO@INPE from
an incipient program to a fully functioning project.
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APPENDIX

A. UNIVERSITIES AND INSTITUTES ASSOCIATED TO
INCT-A

São Paulo
USP – Universidade de São Paulo
INPE – Instituto Nacional de Pesquisas Espaciais
UPM – Universidade Presbiteriana Mackenzie
UNICSUL – Universidade Cruzeiro do Sul
UNIVAP – Universidade do Vale do Paraı́ba
UNESP – Universidade Estadual Júlio de Mesquita Filho
UNIFESP – Universidade Federal de São Paulo
UFABC – Universidade Federal do ABC
FSA – Fundação Santo André

Rio Grande do Sul
UFRGS – Universidade Federal do Rio Grande do Sul
UFSM – Universidade Federal de Santa Maria
UFPel – Universidade Federal de Pelotas
Unipampa – Universidade Federal do Pampa
UCS – Universidade de Caxias do Sul
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Rio de Janeiro
ON – Observatório Nacional
UFRJ – Universidade Federal do Rio de Janeiro
CBPF – Centro Brasileiro de Pesquisas Fı́sicas

Minas Gerais
UFMG – Universidade Federal de Minas Gerais
LNA – Laboratório Nacional de Astrof́ısica
UNIFEI – Universidade Federal de Itajubá
UFJF – Universidade Federal de Juiz de Fora

Santa Catarina
UFSC – Universidade Federal de Santa Catarina
Unochapecó – Universidade Comunitária Regional de Chapecó

Bahia
UESC – Universidade de Santa Cruz

Distrito Federal
UNB – Universidade de Brası́lia

Paraná
UEL – Universidade Estadual de Londrina

Pernambuco
UNIVASF – Universidade Federal do Vale do São Francisco

B. FIRST COMPUTING RESOURCES CENSUS OF THE
INCT-A GROUPS

We conducted a census with all 31 institutes associated to INCT-
Astronomy, asking specifically:

1) What is the total number of users they have in their Department?

2) How many computers do they have access to, including Desk-
tops, and what are their main characteristics?

3) Do they have access to cluster systems? If so, what are the
characteristics?

Although the questionnaire might not be very objective, the
main idea was to collect as much info as possible and then try
to organize it accordingly. Twenty (66%) of the institutes par-
ticipating of the INCT-Astronomy responded to the questions.
The remaining institutes, which did not answer, represent small
groups (2-3 researchers in located in Physics Departments) still
involved in implementing basic infrastructure. Therefore, it would
be fair to consider the data presented in the Tables 1-4 as repre-
sentative of the cyber infrastructure of the Brazilian astronomical
community.

Three types of information were requested and we present
them in Tables 1-4: Number of users, including researchers
and graduate students (Table 1); Cyber infrastructure available
in terms of Desktops (Table 2); Cyber infrastructure available in
terms of clusters (Tables 3a and 3b).

From Table 1 we see that 66% of the institutes composing
the INCT-Astronomy contribute with 277 users. The remaining
12 institutes contribute with 30 users, making a total of 310 users
who participate directly or indirectly of the INCT-Astronomy. The
figure below shows the distribution of the number of users per
institute from where we can see that although the Brazilian com-
munity had a very significant growth in the last 20 years, most of
the main power working on astronomy in Brazil is still concen-
trated in a few places. This is something to be addressed in the
near future within the context of a broad program being prepa-
red by the INCT-Astronomy but it goes beyond the scope of this
project.

From Table 2, we can conclude that most users of our com-
munity have access to at least a Desktop with moderate compu-
tational capacity. This conclusion must be seen with caution. It
happens that the Brazilian astronomical community is dominated
by stellar astrophysicists (∼70%) doing important and compe-
titive research but using data of low complexity (1D spectros-
copy and/or 1D photometry etc). It is important to remember
that even this situation is changing dramatically and will keep
changing in the near future with the large telescopes coming on-
line. In this context, we understand that the current computational
facilities available seem to be adequate and fulfill the present
demand. However, it is clear that the current Cyber infrastructure
will be obsolete when dealing with the extremely large amount of
data coming from either stellar or extragalactic projects.

Tables 3a and 3b refer to the info about clusters available,
allowing high performance processing. As we can see, resear-
chers from these 20 institutes have access to modern servers
with more than 8 processors each (Class A) and to beowulf ty-
pes, composed of mono-processed nodes and internal networks
of 100 Mps (Class B). Only 12 out of the 20 institutes listed in
Tables 3a and 3b have access to a cluster and only 7 out of
these 12 have access to a Class A cluster. These numbers
will not change considerably if we include the remaining 12
institutes which did not provide information.

In essence, 50% of the institutes composing the INCT-
Astronomy have access to a cluster, regardless of which class.
It is important to note that in some cases the clusters are shared
with researchers from different disciplines like Physics since the
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Table 1

INSTITUTE Users Researchers Visitors+ Students:

Postdocs Grad+Msc+PhD

(1) (2) (3) (4) (5)

USP/IAG 67 22 10 35

USP/EACH 1 1 0 0

LNA [6] [0] ? 0

USP/IF 1 2 ? ?

UFSC/DF 23 4 1 18

UNIVAP/IP&D 13 6 0 7

INPE 20 8 0 12

UFMG/DF 22 8 2 12

UNICSUL/NucAstro 7 7 0 0

UESC/DCET 6 7 1 0

UFRGS/IF 49 10 4 35

UFRJ/OV 25 14 1 15

UNIMACK 8 8 ? ?

UFRJ/IF 21 4 1 16

CAXIAS S. 1 1 0 1

UNIFESP 1 2 ? ?

UFABC 5 2 ? 3

UNIFEI 4 4 ? ?

UNIPAMPA 3 3 0 0

ON 9? ? ?

Column (2) totalizes the content of the ensuing columns.

small groups of researchers developing Astronomy in Brazil are
inserted in large Physics Departments.

Adding up all the available processors in the different clus-
ters as listed in Tables 3a and 3b, we would have in principle
the total number of processors for grid processing (see Table 4).
This total, 419, is only 6% of the required number mentioned in
the figures presented previously for processing the entire DR7 in
one band, in one week, for example. This is only a crude esti-
mate considering that all the processors are different, some bet-
ter than others – fifty are old type of processors that would add

little to the total processing capacity. In terms of total storage,
these clusters do not go over 45TB, and although it satisfies the
needs of individual groups, is clearly incompatible with the needs
of the coming decade where large telescopes will produce data
on a 2 PB/year rate.

Finally, we want to stress that this census although may
not represent the entire Brazilian astronomical community, it
shows how deficient the current hardware/software and network
infrastructure is.
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Table 2

INSTITUTE Desktops Processors Total RAM Storage OS

(Gb) (Tb)

(1) (2) (3) (4) (5) (6)

USP/IAG ? 185 [> 185] 29.6 LWM

USP/EACH 2 2 3 3 ?

LNA ? ? ? ? L[WM]

USP/IF ? ? ? ? L[WM]

UFSC/DF 18 35 16 2.5 LW

UNIVAP/IP&D 7 14 7×1 >7×0.2 LW

INPE 21 30 30 4 LW

UFMG/DF 12 17 25 2.6 LW

UNICSUL/NucAstro 6 +1 ? 18 2 LW

UESC/DCET 21 28 20 1 LW

UFRGS/IF 10–15 22 13 1 LW

UFRJ/OV 13 17 10+? 0.8+? LW

UNIMACK 12 12 18.5 9 L

UFRJ/IF 21 21 30 1 LW

CAXIAS S. 5 +10 8 5 1.5 W

UNIFESP 3 3 6 0.75 LW

UFABC 5 ? 10 6 ?

UNIFEI 6 11 30 2 LW

UNIPAMPA ? ? ? ? ?

ON 10 15 25 4 LW

Items within brackets ([ ]) are our own estimates of not informed items. Column (6): L = Linux;

W = Ms-Windows; M = Mac OS.
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Table 3a

INSTITUTE CLUSTER Description Storage Internal OS Parallel Installed

(Tb) Network Software Software

(1) (2) (3) (4) (5) (6) (7) (8)

USP/IAG HYDRA 20×2 Xeon/3Ghz 20×0.2 Gigabit Ganglia MPI

Itautec [=Infiniband?] +[Linux]

HPC 22×1 AMD64/3Ghz 22×0.16 Ethernet Ganglia MPI

100Mb +[Linux]

BEETHOVEN 12×1 Intel/AMD 1×0.12 Ethernet Ganglia

3Ghz 100Mb +[Linux]

USP/EACH

USP/IF PMC/ 48×2/ 1Ghz

DFMa 1×48Gb/RAM [< 10] [Ethernet Linux [VPM] mathematica

+Server:10Gb/RAM 100Mb]

LNA HP 1×QuadCore

DL380R05 Xeon E5405/2.0Ghz 12 [Linux]

UFSC/DF MINERVA 6×HP(XeonE5405) 3.5 Gigabit[?] Ganglia

+9×AMD64/3Ghz +Cacti

+4×Core2quad+storage +pbs

UNIVAP/IP&D [noname] 7×Dual-Core/3Ghz 7×0.08 Trendnet Linux [MPI] [gadget]

INPE CPAD/Inpe 23×2+2×4 4.5 Infiniband Linux MPI gadget

Opteron 2core

+servidor +storage 2.5Gbps RedHat 2DPhot

Items within brackets ([ ]) are our own estimates of not informed items. / Column (2) gives the nicknames of the corresponding equipment; a bar (/)

indicates that this is a shared resource. Notice that multi-processed (N>4) storage servers have also been included here.

Journal of Computational Interdisciplinary Sciences, Vol. 1(3), 2010



“main” — 2010/5/7 — 16:53 — page 205 — #19

R.R. DE CARVALHO et al. 205

Table 3b

INSTITUTE CLUSTER Description Storage Internal OS Parallel Installed

(Tb) Network Software Software

(1) (2) (3) (4) (5) (6) (7) (8)

UFMG/DF {BULL/ {50×4 ? { } {Infiniband?} { }

University} ; 50×32Gb/RAM}

UNICSUL/ estação1 8× ?; 16Gb/RAM 1.5 Linux RedHat

NucAstro estação2 8× ?; 32Gb/RAM 1.5 Linux RedHat

{ }

UESC/DCET [noname] 16×Athlon/1.7Ghz

/8GbRAM

{BULL/ {160× Xeon/2.66Ghz {10} {infiniband} {Linux; PBS-pro; Bull} {Oracle}

University} 320GbRAM+storage}

UFRGS/IF CPADA 6×2× Athlon 0.24 Ethernet Linux MPI Gadget

1.4GHz/1GbRAM 100Mb

UFRJ/OV [noname] 4×Celeron/2.4Ghz 0.32 Ethernet Rock’s + Linux

/4×1GbRAM 100Mb

DELL 4×Xeon; 0.25 Ubuntu

UNIMACK [noname] 15×2 Opteron/1.4Ghz 1 ? Debian

+server2core/?GbRAM

UFRJ/IF

CAXIAS [noname] 11×P4/2.6GHz/ 12×0.08 Ethernet Oscar-Linux

1GbRAM+1×P4/3Ghz 100Mb

UNIFESP { }

UFABC { }

UNIFEI

UNIPAMPA

ON

Items within braces ({ }) correspond to projected acquisitions. / Items within brackets ([ ]) are our own estimates of not informed items. / Column
(2) gives the nicknames of the corresponding equipment; a bar (/) indicates that this is a shared resource. Notice that multi-processed (N>4) storage
servers have also been included here.
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Table 4

INSTITUTE Users No. Cluster Cluster

Processors Storage (Tb)

USP/IAG 67 74 7.64

USP/EACH 1 0 0

LNA 6 4 12

USP/IF 1 96 10

UFSC/DF 23 31 3.5

UNIVAP/IP&D 13 14 0.56

INPE 20 108 4.5

UFMG/DF 22 0 0

UNICSUL/NucAstro 7 16 3

UESC/DCET 6 16 1

UFRGS/IF 49 12 0.24

UFRJ/OV 25 8 0.57

UNIMACK 8 32 1

UFRJ/IF 21 0 0

CAXIAS S. 1 12 0.96

UNIFESP 1 0 0

UFABC 5 0 0

UNIFEI 4 0 0

UNIPAMPA 3 0 0

ON [9] 0 0

Totals 283 423 44.97

Items within brackets ([ ]) are our own estimates of not informed items.
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