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ABSTRACT

Nowadays, multithread hardware architectures like multi-core CPUs and GPUs found on PCs and game consoles (as Microsoft Xbox
360 and Sony Playstation 3) are a trend. Hence, real-time simulation and visualization systems, such as scientific visualization,
games and virtual reality environments, will not get the best performance on such architectures running sequentially in a single-thread
loop. For this reason, multithread real-time loop models that take advantage of such architectures are gaining importance. This paper
presents a survey on loop models for games and real-time systems. Also it discusses the usage of simple loops with single-thread
architecture and multithread loop architectures in scientific simulations and visualization systems. Furthermore, this paper presents
a new architecture for real-time loops that can detect and analyze the user hardware in order to adapt itself to a specific loop model,
achieving the best performance for a specific hardware and application.
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1 INTRODUCTION

Multithread architectures on PC are getting more and more com-
mon with the development of multi-core processors and the new
GPU parallel architectures that can also be used for generic pro-
cessing. Also top of the line video games like the Microsoft Xbox
360 and the Sony Playstation 3 feature multi-core processors.
Hence, real-time architectures have to parallelize and distribute
their tasks between the available processors, using concepts from
distributed and parallel systems in order to fully take advantage of
the hardware. This work utilizes some of these concepts, like task
distribution and load balancing, adapting them to the loop archi-
tectures of real-time simulations.

Games and simulations are interactive real-time systems and,
like most multimedia applications, they have time constraints to
execute all of their processes and to present the results to the end
user. If a simulation does not fulfill this requirement, it will lose
its interactivity and consequently it will fail. A common parameter
for measuring a game and simulations performance is frames per
second (FPS). The lower acceptable bound for a game is 16 FPS.
There are not higher bounds for a game FPS, but in PCs when
the refresh rate of the monitor is less than the refresh of the ap-
plication, disposals of the rendered frame may occur. In order to
achieve the best FPS in the application, real-time systems loops
are designed and developed.

The simulation loop is the structure that determines the order
in which each task of the application is executed during the loop.
The loops are mainly divided in three stages: data acquisition,
which gets the data from user’s input; data processing, where the
application logic is processed and the simulation state is updated;
and data presentation, where the results are presented to the end
user through images and audio. There are several works that deal
with real-time loops in order to achieve better results but normally
they are very restricted to the designed hardware. This work pre-
sents a framework capable of executing game loops that can be
dynamically adapted to the user hardware in order to take the best
performance from it.

When a task is divided in threads, in the distribution of the
computation between the threads sometimes is not ideal making
threads wait for each other. This is a common problem in a dis-
tributed system and, to solve this, an automatic work distribution
among the threads is needed. The proposed framework imple-
ments this load balancing using a heuristic to solve this problem.

This paper is organized as follows. Section 2 presents real-
time loop models. Section 3 presents GPGPU concepts. Section 4
presents GPUs real-time loop models. Section 5 presents distri-

buted real-time loop models and also heuristics for distribution
of the tasks of a real-time loop. Section 6 presents a framework
to implement any real-time loop model, with load balancing and
adaptation of the loop to the end user hardware configuration.
Section 7 presents the test case and results. Finally, Section 8
presents the conclusions.

2 REAL-TIME LOOP MODELS

Real-time loops are the underlying structures games and real-
time simulations are built upon. These loops are regarded as
real-time because games and simulations (and similar kinds of
multimedia applications) have time constraints to run the tasks
that rely on them. This means that if those tasks do not run fast
enough, the experience that the application must provide will be
compromised.

The tasks that a computer simulation should execute can be
broken down into three general stages: data acquisition, data pro-
cessing, and presentation. Data acquisition means gathering data
from available input devices, such as mice, joysticks, keyboards,
and motion sensors. The data processing stage refers to applying
the user input into the application (user commands), applying si-
mulation rules (the simulation logic), simulating the world phy-
sics, simulating the artificial intelligence, and others tasks to up-
date the simulation state. The presentation refers to providing
feedback to the user about the current simulation state, through
images and audio.

As listed previously, there are many tasks that a real-time
system must run. A real-time system provides the illusion that
everything is happening at once. Since simulations and games
are interactive applications, if they are unable to perform its work
on time, the user experience will not be acceptable. This issue
characterizes real-time computer simulations and games as he-
avy real-time applications.

Although real-time loop represents the heart of real-time si-
mulations and games, it is not easy to find academic works spe-
cifically devoted to this subject. The works by Valente et al. [27],
Dalmau [3], Dickinson [4], Watte [28], Gabb and Lake [5], and
Monkkonen [17] are among the few ones.

The simplest real-time loop models are the coupled ones. The
Simple Coupled Model [27] is perhaps the most straightforward
approach to modeling real-time loops. It consists of sequentially
arranging the tasks in a main loop. Figure 1 depicts this model.

This first model runs as fast as the machine is able to, making
it very unpredictable when it is used in different machine confi-
gurations. The Synchronized Coupled Model [27] tries to repair
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this issue by delaying the main loop to meet a predefined running
frequency. The purpose is to bring uniformity to the application
execution. However, this strategy poses an artificial limit to the
application, possibly wasting processing power in order to meet
that requirement. Figure 2 illustrates this model.

read user input

update

render

Figure 1 – Simple Coupled Model.

read user input

update

synchronization

(ex: 30fps)

render

Figure 2 – Synchronized Coupled Model.

The uncoupled models separate the rendering and update sta-
ges, so they can run independently, in theory. These models con-
sider single-thread [27, 4] and multithread designs [27, 5, 17].
A naive approach to a real-time uncoupled models is to use one
thread for rendering and another for the update tasks. This ap-
proach exposes the same unpredictable behavior of the Simple
Coupled Model. The Multithread Uncoupled Model [27] and the
Single-thread Uncoupled Model [27] try to bring determinism to
the game execution by feeding the update stage with a time para-
meter. Figures 3 and 4 illustrate these models, respectively.

read user input

update(t)

t=calulate 

elapsed time

render

Figure 3 – Multithread Uncoupled Model.

read user input

update(t)

t=calulate 

elapsed time

render

Figure 4 – Single-thread Uncoupled Model.

By using these models, the application has a chance to ad-
just its execution time and run the same way in different machines.
More powerful machines will be able to run the application more
smoothly, while less powerful ones will still be able to provide
some experience to the user. Although these are working soluti-
ons, time measuring may vary greatly in different machines due
to many reasons (such as process load), making it difficult do re-
produce it faithfully. For example, some simulations may require
a scene replay feature [4], which may not be trivial to implement
if it is not possible to run some part of the loop sequence in a
deterministic way. Other features as network module implementa-
tion and program debugging [4] may be easier to implement if the
loop uses a deterministic model. Another issue is that running
some simulations too frequently, like AI and the logic, may not
yield better results. Hence, the models proposed in [27, 4, 16]
try to address these issues. The Fixed-frequency Uncoupled
Model outlined in [27] features another update stage that runs
at a fixed frequency, besides the time-based one. The work by
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Dalmau [3] present a similar model, although not naming it ex-
plicitly. These works describe the model using a single-thread
approach. Figure 5 illustrates it.

read user input

update(t)

t=calulate 

elapsed time

render

run application logic

fixed frequency

Figure 5 – Fixed-frequency Uncoupled Model.

The model described in [4] presents just one update stage
that runs at a fixed-frequency, whose main objective is to attain
reproducibility. Another interesting model is the one used in the
Microsoft XNA framework [16]. The XNA model has an update
stage that runs at a fixed frequency or freely, but not both. The
user is able to set a parameter that informs the XNA framework
about which one to use.

Nowadays, computers and new video game consoles (such
as the Xbox 360 and the Playstation 3) feature multi-core pro-
cessors. For this reason, real-time loops that take advantage of
these resources are likely to become important in the near future.
Therefore, making the tasks parallel in multiple threads is a natu-
ral step.

However, dealing with concurrent programming introduces
another set of problems, such as data sharing, data synchroniza-
tion, and deadlocks. Also, as Gabb and Lake [5] states, not all of
tasks can be fully parallelized due to dependencies among them.
As examples, in a game, characters cannot move until the game
logic is computed, and rendering cannot be performed until the
game state is updated. Hence, serial tasks represent a bottleneck
to parallelizing simulation computation.

The work [17] presents models regarding multithread archi-
tectures that are grouped into two categories: function parallel
models and data parallel models. The first category is devoted to
models that present concurrent tasks, while the second one tries
to find data that can be processed entirely in parallel.

The Synchronous Function Parallel Model [17] proposes to
allocate a thread to all tasks that are (theoretically) independent
of each other. For example, performing physics simulation while
calculating animation. Figure 6 illustrates this model.

r ead  p l a ye r  i npu t

g ame  l o g i c

a n ima t i o n

r e nde r

p h y s i c s

Figure 6 – Synchronous Function Parallel Model.

The author states that this model is limited by the amount of
available processing cores, and the parallel task should have little
dependency on each other.

The Asynchronous Function Parallel Model [17] is the for-
malization of the idea found in [5]. This model does not present a
main loop. Figure 7 illustrates the model.

physics

render

application logic

Figure 7 – Asynchronous Function Parallel Model.

Different threads run the simulation tasks by themselves. The
model is categorized as asynchronous because the tasks do not
wait for the completion of other ones to perform their job. Instead,
the tasks use the latest computed result to continue processing.
For example, the rendering task would use the latest completed
physics information to draw the objects. This measure decreases
the dependency among tasks. However, task execution should be
carefully scheduled for this scheme to work nicely. Unfortunately,
this is often out of the scope of the application. Also, serial parts
of the application (like rendering) may limit the performance of
parallel tasks [5].
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Also Rhalibi et al. [23] show a different approach for real-
time loops that is modeled by taking the tasks and its dependency
into consideration. It divides the loop steps in three concurrent
threads, creating a cyclic-dependency graph to organize the task
ordering. In each thread, the tasks for rendering and update are
divided taking into consideration their dependency.

The Data Parallel Model [17] uses a different paradigm in
which data are grouped in parallel sections of the application
where they are processed. So, instead using a main loop with
concurrent parts that process all data, the Data Parallel Model
proposes to use separate threads for data sets (like game objects).
This way, the objects run their own tasks (like AI and animation)
in parallel. Figure 8 depicts this approach.

render

IA

animation

IA

animation

read user input

Figure 8 – Data Parallel Model.

According to the author, this model scales well because it can
allocate as many processing cores as they are available. Perfor-
mance is limited by the amount of data processing that can run in
parallel. An important issue is how to synchronize communication
of objects running in different threads. The author states that the
biggest drawback of this model is the need to having components
designed with data parallelism in mind.

3 GPGPU

GPGPU or General-Purpose Computing on Graphics Processing
Units (GPUs) is the use of GPUs for generic, non graphic, proces-
sing. Nowadays, GPUs are massively parallel architecture with
more processing power than the CPUs. GPGPU has been the
theme of research of diverse areas like: image analysis [12], linear
algebra [2], chemistry [26], physics simulation [20], and crowd
simulation [21], among others.

The first programmable graphic cards could only be program-
med using low level languages (assembly). Afterwards, high level
languages were created for GPU programming which were cal-
led shader languages. C for Graphics (Cg) was the first language
and works with both APIs (DirectX and OpenGL). High Language
Shader Language (HLSL) has been integrated with DirectX and
the last one is OpenGL shader language (GLSL) which is part of
OpenGL API. These languages were mainly designed for imple-
menting graphics effects, but their usage on GPGPU problems
was not trivial. Thus, GPGPU could be developed only by using
either vertex or pixel shaders, with their limitations and idiosyn-
crasies [30].

The unified architecture changed the graphics cards architec-
tures. There are not differences between vertex and pixel proces-
sors such as before. At the present, the stream processors are
used for both vertex and pixel programs. Shader languages are
still used, but mostly for graphics effects, and not for GPGPU
programming anymore. For GPGPU, there are particular langua-
ges to work directly with the GPU. These architectures are used
to process general data on the GPU providing: more flexibility on
memory access; more integration with the traditional CPU lan-
guages and IDEs; usage without the integration with a graphic
API; and mostly computational problems can be easier modeled
for the GPU than using a shader or assembly language.

Nowadays, NVIDIA, AMD and Intel have been working in
multi-core hardware and programming language solutions for
GPGPU. NVIDIA developed Compute Unified Device Architecture
(CUDA) [18] while AMD developed Compute Abstraction Layer
(CAL) [1]. Both were based on the C language and work with an
extension of C/C++ CPU language. Besides, Intel has worked with
developing multi-core hardware based on x86 processors in pa-
rallel [25] and it is called Larrabee. Also there is OpenCL (Open
Computing Language) [7] which is available for both NVIDIA and
AMD graphics cards.

GPUs have been designed for problems that can be modeled
as stream-based processes with intense mathematical calculati-
ons. The latency of memory has been a constraint in this field,
since it can be the bottleneck of the simulation [14].

4 REAL-TIME LOOP MODELS WITH THE USE
OF GPGPU

Real-time loop models are architectural solutions for managing
and tidying tasks of the real-time applications. Users input, vi-
sualization and general processing, such as artificial intelligent,
physics simulations, are instances of tasks computed in this loop.
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With the development of the programmable GPUs, some of the
traditional update steps of the real-time loop can be transferred
from the CPU to the GPU, like artificial intelligence [24] and phy-
sics [19]. Hence, the traditional CPUs loops presented in section
2 must be adapted in order to take advantage of this new feature.
This section presents the real-time loop models that use GPGPU
available in the literature.

4.1 Single-Thread Real-time Loop Models
with a GPGPU Stage

One of the simplest execution of the GPGPU step just after
the execution of the rendering without any synchronization, can
be seen on Figure 9.

This loop has been used in many available works [6, 20, 21].
This solution also could be adapted with a synchronization
method to synchronize the loop to a fixed frequency as shown
in Figure 10. This loop has the same disadvantage of possible
waste of processing power as the Synchronized Coupled Model.

The time parameter also could be used to synchronize the
loop without wasting processing power. This option can be seen
on Figure 11.

The next subsections present some multithread real-time
loop models with GPGPU. This kind of game loop involves pa-
rallel programming. Although there is an independent sections
amount stages, the shared and non-shared parts must be detec-
ted, since they will be treated differently. GPGPU and update sta-
ges access the same parts, making necessary a synchronization
object in order to guarantee mutual-exclusive access to shared
data and preserve task execution ordering.

read user input

update

render

GPGPU

Figure 9 – Single Coupled Model with an GPGPU stage.

read user input

update

render

GPGPU

synchronization

(ex: 30fps)

Figure 10 – Synchronized Coupled Model with a GPGPU stage.

read user input

update(t)

render

GPGPU(t)

t=calulate 

elapsed time

Figure 11 – Single Thread Uncoupled Model with a GPGPU stage.

4.2 Multithread Real-Time Loop Models with a
GPGPU Stage Uncoupled from the Main Loop

This multithread architecture is composed by one thread for han-
dling the user input, updating, and rendering stages, and another
one for the GPGPU, as can be seen in Figure 12.

The literature [10, 11] presents two implementations of this
loop model. The work describes an AABB (axis-aligned bounding
box) collision detection implemented on the GPU and uses se-
maphores to synchronize the threads. The second work presents
a hybrid physics engine which implements some of its methods
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on the GPU. The synchronization was performed in the following
way: the physics GPGPU loop was executed every 25 milliseconds
and the main loop thread is updated as fast as possible, waiting
for the result of the physics loop engine thread after every 25 mil-
liseconds, as can be seen of Figure 13.

read user input

update(t)

t=calulate 

elapsed time

render

GPGPU

Figure 12 – The synchronism of the threads.

Figure 13 – The synchronism of the threads.

4.3 Multithread Real-Time Loop Model with a
GPGPU Stage and the Render Stage
Uncoupled from the Main Loop

The multithread uncoupled with GPGPU was presented in
[29, 30]. It is a model based on the multithread uncoupled model
(Fig. 3) with the inclusion of a new stage. There are three threads
in this model, as can be seen on Figure 14. The first executes
input and update stages. The second is responsible of GPGPU
stage and the last one computes the render stage.

read user input

update(t)

t=calulate 

elapsed time

render

GPGPU

Figure 14 – Multithread Uncoupled with GPGPU.

As the synchronization must be done, GPGPU stage is exe-
cuted after update and the synchronization happens between
theses states, while the render stage runs in parallel to the pre-
vious ones. The update and GPGPU stages are responsible for
defining the new simulation state. For example, the former calcu-
lates the collision response for some objects, whereas the latter
defines new positions for the objects. The render stage presents
the results of current application state. Multithread programming
is a complex subject, as the tasks in the application run alternately
or simultaneously, but not linearly.

5 REAL-TIME LOOP MODELS WITH AUTOMATIC
DISTRIBUTION BETWEEN CPU AND GPU

With the development of models for running simulation tasks
on CPU and also on GPU, come other models that can take the
best characteristics of both environments. The motivations for
employing automatic task distribution schemes are as follows:

1. Take advantages of the best characteristics of both the
CPU and GPU;

2. Take out from the developer the decision of which proces-
sor should run some tasks, leaving this to the automatic
distribution scheme to choose;

3. Redistribution of tasks between the processors when a
processor (CPU or GPU) is overloaded with work.

In order to use a distribution between CPU and GPU the
developer must provide both implementations and also mecha-
nisms to change the processor without loss of information. Using
this concept, it is possible to adapt the loop models from sec-
tion 4 for the use with an automatic distribution of tasks, putting a
distribution mode instead the GPGPU task to decide between the
CPU or GPU to execute the task, as can be seen on Figure 15.
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G P U C P U

Au t oma t i c

D i s t r i bu t i on

Figure 15 – The Distribution Module.

In the next subsections this work presents the forms of distri-
bution: a manual distribution or an automatic distribution based
on heuristics.

5.1 Manual Decision

The simplest decision on how to distribute tasks between the
CPU and GPU is to let the user or developer to do it. This de-
cision can be done during the application via a C function or even
a script language, such as LUA [15]. Former works [29] imple-
ment a task scheduling distribution between CPU and GPU via
a script file.

5.2 Heuristics for Automatic Distribution

The methods for automatic task distribution that were first pre-
sented in [10, 11] are: “starting” automatic distribution, “cycle”
automatic distribution, “starting full test” automatic distribution,
“adaptive” automatic distribution, “best time” automatic distribu-
tion and “resource” automatic distribution.

5.2.1 “Starting” Distribution

The “starting” strategy for automatic distribution between CPU
and GPU is very simple: it computes a constant number of fra-
mes in the GPU mode and the same constant number of frames
in the CPU mode. With the measured times, it selects the fastest
processor to process all the frames of the application.

The reason why this method computes a constant number of
frames in each processor is to avoid making a wrong decision that
could happen if the scheme would only process only one frame at
each one. All the subsequent schemes spend a constant number
of frames in initial tests for each processor because of the same
principle. Algorithm 5.1 illustrates this method.

This method, in normal conditions, always selects the fastest
processor without the necessity for the user or developer to do it.
This is important for the developer who does not know the hard-
ware of the user of the application and wants to use the fastest
processor available.

Even though the “starting” automatic distribution selects the
fastest processor, it does not avoid the application from being
slowed down by other processes of the system if the CPU or GPU
is already overloaded with other tasks. Also, the simulated scene
may change during the application, and with that, the fastest pro-
cessor can no longer be the one selected from the “starting”
automatic distribution.

5.2.2 “Cycle” Distribution

The “cycle” distribution has the following strategy: at every 100
frames, the engine calculates 5 frames in the GPU mode and more
5 frames in the CPU mode. From these times, the “cycle” automa-
tic distribution chooses the fastest processor to simulate the next
90 frames, as can be seen on algorithm 5.2. In this case, only 5%
of the frames are spent using the slower scenario and 95% with
the best one.

This scheme is ideal for applications where the perfor-
mance difference between both processors is low. If the diffe-
rence between the processors is high, the 5% of the frames spent
in the slowest mode can affect the overall performance of the
application.

5.2.3 “Starting Full Test” Distribution

The “starting full test” is based on the same principle as the “star-
ting” distribution, i.e, it also does an initial test in the beginning
of the application but the difference is that this method does a
full test.

This full test consists in the following strategy: it starts with
the calculation of “minBodies” bodies simulation in 5 frames in
the GPU and 5 frames in the GPU (represented by Execute5Frames
in algorithm 5.3). Then it saves these times and increases the
number of bodies multiplying by 2, and computes 5 frames in
each processor, and so on until the “maxBodies” number of bo-
dies is reached. “minBodies” and “maxBodies” are values that
the developer must provide or use a default value (16 for “min-
Bodies” and 8192 for “maxBodies”), like algorithm 5.3 illustrates.
Based on those computed times, the simulation can determine
which processor is faster for a determined scene.

This mode always selects the fastest processor for a given
scene, but it is very intensive and spends considerable time
in the beginning of the application. This method can prevent
changes in the scene (number of bodies in the physics calcula-
tion) without the necessity of spending 5% of its frames in the
slowest case.
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Algorithm 5.1 “Starting” distribution

if frameCount == 10 then

calculateElapsedTimeGPU()

mode ⇐ CPU
else

if frameCount == 20 then

calculateElapsedTimeCPU()

if GPUTime < CPUTime then

mode ⇐ GPU
end if

end if

end if

return mode

Algorithm 5.2 “Cycle” distribution

if frameCount == 5 then

calculateElapsedTimeGPU()

mode ⇐ CPU
else

if frameCount == 10 then

calculateElapsedTimeCPU()

if GPUTime < CPUTime then

mode ⇐ GPU
end if

end if

else

if frameCount == 100 then

frameCount ⇐ 0
mode ⇐ GPU
end if

end if

return mode

Algorithm 5.3 “Starting full test” distribution

numBodies ⇐ minBodies
mode ⇐ GPU
while numBodies < maxBodies do

Execute5Frames()

if frameCount == 5 then

calculateElapsedTimeGPU()

mode ⇐ CPU
else

if frameCount == 10 then

calculateElapsedTimeCPU()

SaveTimes()

frameCount ⇐ 0
mode ⇐ GPU
numBodies *= 2

end if

end if

end while
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5.2.4 “Adaptive” Distribution

The “adaptive” distribution is based on the “cycle” distribution.
The strategy is to perform an initial test in which 5 frames are
computed on the GPU and 5 ones are processed on the CPU,
and then to compute the next 90 frames on the fastest processor.
After the execution of these 100 frames, the “adaptive” distribu-
tion starts to check every frame if the number of bodies has chan-
ged more than a percentage p since the initial test. When this
happens, it does the initial test again to check which processor

is faster for the current number of bodies and after the 100 fra-
mes it restarts to check the number of bodies again, as can be
seen in algorithm 5.4.

Because of the characteristics of the processors, this mode
tries to detect when the number of bodies increases (above a
certain percentage p) if it is running on the CPU and when the
number of bodies decreases (below the specified percentage p)
if it is running on the GPU. The value of p must be provided by
the developer, otherwise a default value of 20% is used.

Algorithm 5.4 “Adaptive” distribution

if frameCount == 5 then

calculateElapsedTimeGPU()

mode ⇐ CPU
else

if frameCount == 10 then

calculateElapsedTimeCPU()

if GPUTime < CPUTime then

mode ⇐ GPU
end if

end if

else

if frameCount > 100 AND |numBodies − initialBodies| /initialBodies > p
then

initialBodies ⇐ numBodies
frameCount ⇐ 0
mode ⇐ GPU
end if

end if

return mode

This mode in the best-case scenario behaves like the “star-
ting” mode and in the worst case behaves like the “cycle”. So,
this mode is able to select the fastest processor for the physics
simulation without the necessity of spending 5% of its frames in
the slowest scenario (in the best case) and without spending con-
siderable time with an extensive test on processors.

5.2.5 “Best Time” Distribution

The idea of this scheme consists in creating an approach that is
able to redistribute tasks between CPU and GPU without the costs
of making a lot of tests in the slowest processor, similar to the
“cycle” distribution scheme.

This scheme presents this strategy: it starts calculating 10
frames on the GPU, and another 10 in the CPU. At the end of
these 20 frames it determines the processor with the fastest time,
and uses it for the next 10 frames. If the time of this processor after

these 10 frames is less than the best time of the other processor,
it calculates 10 frames on the other processor, and so forth. This
scheme always saves the fastest time of each processor. Algo-
rithm 5.5 implements this strategy.

The idea of this distribution is to use the fastest processor
in most cases and to use the slowest one to take out work of the
fastest processor when it is overloaded.

5.2.6 “Resource” Distribution

The idea of the “resource” strategy consists in the use of libraries
to verify the processor usage (percentage).

The Windows API was used for this verification on the CPU.
Initial tests have shown that the CPU usage varies with the number
of bodies and remains constant when this same number does not
vary, showing that this verification can be used for the purpose
of distribution.
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Algorithm 5.5 “Best time” distribution

if mode == GPU then

if GPUBestTime > GPUTime then

GPUBestTime ⇐ GPUTime
end if

else

if mode == CPU then

if CPUBestTime > CPUTime then

CPUBestTime ⇐ CPUTime
end if

end if

end if

if frameCount == 10 then

calculateElapsedTimeGPU()

mode ⇐ CPU
else

if frameCount == 20 then

calculateElapsedTimeCPU()

if GPUBestTime < CPUBestTime then

mode ⇐ GPU
end if

end if

else

if frameCount > 30 then

if mode == GPU then

if GPUTime > CPUBestTime then

frameCount ⇐ 21
mode ⇐ CPU
end if

else

if mode == CPU then

if CPUTime > GPUBestTime then

frameCount ⇐ 21
mode ⇐ GPU
end if

end if

end if

end if

end if

return mode

The NVPerfKit [13] was used for checking this parameter in
the GPU. The initial tests have shown that the GPU usage va-
ries little with the number of bodies and do not remain cons-
tant when this number is constant, showing that is not possi-
ble to predict whether or not the GPU is overloaded with work by
this method. Hence, this verification is not good for the purpose
of distribution.

This scheme uses only the CPU charge, using the following
strategy: 10 frames are calculated at the GPU and 10 frames at
the CPU. Based on the obtained results, the fastest processor is
selected, in the same manner that the “starting” automatic distri-

bution. If the fastest processor is the CPU, it activates a variable
“useCPU”, and after 10 frames it starts to verify the percentage
of use of the CPU, if this percentage raises to more than 80%, it
sends the next 10 frames to the GPU. Algorithm 5.6 describes this
approach.

This automatic task distribution scheme is aimed at simulati-
ons where the CPU is faster than the GPU, and the CPU uses the
GPU as an auxiliary processor when it is overloaded with work.
When the GPU is faster than the CPU, this scheme will not be able
to redistribute tasks, and will behave like the “starting” automatic
distribution.
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Algorithm 5.6 “Resource” distribution

if frameCount == 10 then

calculateElapsedTimeGPU()

mode ⇐ CPU
else

if frameCount == 20 then

calculateElapsedTimeCPU()

if GPUTime < CPUTime then

mode ⇐ GPU
else

useCPU ⇐ true
end if

end if

else

if useCPU AND frameCount > 30 then

perc = getPercCPU()

if perc > 80 then

mode ⇐ GPU
frameCount ⇐ 21
end if

end if

end if

return mode

6 A FRAMEWORK FOR REAL-TIME LOOP MODELS

Although processing power in consoles and computers has
greatly increased, and multi-core architectures make it possible
to use parallel processing, proper software is needed to extract
high performance from the hardware. Even though the real-time
loop models concept applies to both consoles and computers,
there are some differences among these kinds of hardware.

Consoles (i.e. consoles in the same family such as the Xbox
360) have the same hardware, memory, processors and number
of cores, making development in those platforms more predicta-
ble (i.e. the developers knows the hardware (s)he will be working
with). On the other hand, for computers there is a myriad of con-
figurations considering processors, memory, GPUs, and combi-
nation of these (and others) hardwares.

The proposed architecture works with multi-core CPUs and
GPUs (if one is available). The architecture considers both as re-
sources. A resource is a CPU core or a GPU, and the architecture
encapsulates them. However, not all of loop tasks are suitable for
processing both in the GPU and the CPU, as their architectures
are different and require different programming paradigms.

The aim of the proposed architecture is to provide a manage-
ment layer that is able to analyze dynamically the hardware per-
formance and adjust the amount of tasks to be processed by the
resources. In order to make a correct task distribution, it is ne-

cessary to run an algorithm, and in the current architecture, a
script is responsible for this. The architecture applies the scrip-
ting approach because the loop can be used in many simulations,
and for each of them it uses a different algorithm and a subset
of its parameters.

The core of the proposed architecture corresponds to the
Task Manager and the Hardware Check classes. The Task Manager
schedules tasks in threads and changes which processor handles
them whenever it is necessary. The Hardware Check detects the
available hardware configuration capabilities.

Additionally, with this architecture one can implement any
loop model presented in this work. Also, the heuristics presented
in section 5 can be adapted for this framework. An earlier ver-
sion of this architecture was first presented in [9] and it is based
on the concept of tasks. A task corresponds to some work that
the application should execute, for instance, reading player input,
rendering and updating application objects.

In the proposed architecture, a task can be anything that the
application should work towards processing. However, not all
tasks can be processed by all processors. Therefore, the appli-
cation has three groups of tasks. The first one consists of tasks
that can be modeled only for running on the CPU, like reading
player input, file handling, and managing other tasks. The second
group consists of tasks that can only run in the GPU, like the
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Figure 16 – Multithread uncoupled with an GPGPU stage.

presentation of the scene. The third group can also be modeled
for running on both processors. These tasks are responsible for
updating the state of some objects that belongs to the applica-
tion, like AI and physics.

The task concept is modeled as an abstract class that dif-
ferent threads are able to load. Figure 16 illustrates the UML
class diagram for the Task and its subclasses.

The Task class is a virtual base class and has five subclas-
ses: Input Task, Update Task, Presentation Task, Hardware Check
Task and Automatic Update Task. The first three are also abstract
classes. The fourth is a special class to check the hardware. The
latter is a special class whose work consists on performing the
automatic dynamic distribution between the CPU and the GPU.
This distribution consists of choosing the processor that is going
to run a task according to some heuristic specified in a script
file. Also a special class, the Task Manager class, is responsi-
ble for creating and keeping all the tasks of the loop (discussed
in section 6.2).

The Input Task class and subclasses handle user input rela-
ted issues. The Update Task class and subclasses are responsi-
ble for updating the loop state. The CPU Update class should
be used for tasks that run on the CPU, and the GPU Update
class corresponds to tasks that run on the GPU. The Presentation
Task class and subclasses are responsible for presenting infor-

mation to the user, which can be visual (Render Task) or audio
(Sound Task).

6.1 The Hardware Check Class

The Hardware Check is implemented as a task that runs on the
CPU. There is only one instance of this class in the application.
This class checks the available hardware and keeps track of the
number of CPU cores and GPUs (with their capabilities) availa-
ble in the system.

With this class the automatic task manager can know, with-
out previous knowledge, the available hardware in the end user
computer. And with that information the automatic class can bet-
ter distribute the task between CPU cores and GPU(s).

This checking is always executed at the beginning of the si-
mulation if the real-time loop model is automatic. In the case of
the loop used in the simulation is a deterministic one, this class
is not used.

6.2 The Task Manager

The Task Manager (TM) is the core component of the proposed
architecture. It is responsible for instancing, managing, synchro-
nizing, and finalizing task threads. Each thread is responsible for
tasks that run either on the CPU or on the GPU. In order to con-
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figure the execution of the tasks, each task has control variables
described as follows:

• THREADID: an id of the thread that the task is going to use.
When the TM creates a new thread, it creates a THREADID
for the thread and it assigns the same id to every task that
executes in that thread;

• UNIQUEID: an unique id of the task. It is used to identify
the tasks;

• TASKTYPE: the task type. The following types are availa-
ble: input, update, presentation, and manage;

• DEPENDENCY: a list of the tasks (ids) that this task de-
pends on to execute.

With that information, the TM creates the task and configures how
the task is going to execute. A task manager can also hold another
task manager, so it can use it to manage some distinct group of
tasks. An example of this case is the automatic update tasks that
section 6.3 presents.

The Task Manager acts as a server and the tasks act as its
clients, as every time a task ends, it sends a message to the Task
Manager. The Task Manager then checks which task it should exe-
cute in the thread.

When the Task Manager uses a multithread loop model, it is
necessary to apply a parallel programming in order to identify
the shared and non-shared sections of the application, because
they should be treated differently. The independent sections com-
pose tasks that are processed in parallel, like the rendering task.
The shared sections, like the update tasks, need to be synchroni-
zed in order to guarantee mutual-exclusive access to shared data
and to preserve task execution ordering.

Although the threads run independently from each other, it
is necessary to ensure the execution order of some tasks that
have processing dependence. The architecture accomplishes this
by using the DEPENDENCY variable list that the Task Manager
checks to know the task execution ordering.

The processing dependence of shared objects needs to use
a synchronization object, as applications that use many threads
do. Multithread programming is a complex subject, because the
tasks in the application run alternately or simultaneously, but
not linearly. Hence, synchronization objects are tools for hand-
ling task dependence and execution ordering. This measure
should also be carefully applied in order to avoid thread starva-
tion and deadlocks. The TM uses semaphores as the synchro-
nization object.

6.3 The Automatic Update Task

The purpose of this class is to define which processor will run
the task. The class may change the task’s processor during
the application execution, which characterizes a dynamic distri-
bution.

One of the major features of this new architecture is to allow
dynamic and automatic task allocation between the CPU threads
and GPU. In order to do that it uses the Automatic Update Task
class. This task can be configured in order to be executed in the
following modes: one CPU thread only, multithread CPU, GPU
only, and in the automatic distribution between the hardware de-
tected by Hardware Check class.

In order to execute on the multithread CPU mode, there are
some requirements: a parallel CPU implementation must be pro-
vided for the CPU; for executing on the GPU mode a GPU im-
plementation must be provided; and in order to make use of the
automatic distribution all the implementations must be provided
accordingly to the mode. The distribution is done by a heuristic in
a script file. Also a configuration on how the heuristic is going to
behave is needed, and for that a script configuration file is presen-
ted in section 6.3.1. The scripts files are implemented in Lua [8]
(section 6.3.2).

The Automatic Update Task acts like a server and its tasks
as clients. The role of the automatic update task is to execute a
heuristic to automatically determine in which processor the task
will be executed. The Automatic Update Task executes the heu-
ristic and determines which client will execute the next task and
will send a message to the chosen client, allowing it to execute.
Also, every time the clients finish a task they send a message to
the server to let it know it has finished. Figure 17 illustrate this
process.

One of the major features of the proposed architecture is
scheduling a task to run on another processor (CPU core to GPU
or GPU to CPU core or CPU core to other CPU core) during its
execution. In these cases, the task state is pushed to the tasks
own stack (and later restored) regardless of the processor type.
For example, in time t1 the GPU processes a physics task and in
time t2 this task is scheduled to the CPU. When the task starts
to run again (now in the CPU), the Task Manager reloads the
task state from the tasks stack and signals it that the processor
type has changed. The task priority is changed to a value of zero,
which means that the task is placed on the front of the task queue.
This measure is a way to guarantee that the task will keep on run-
ning. Also the Automatic Update Task can perform load balancing
according to the usage rate of processors.
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Figure 17 – The Automatic Update Task class and messages.

6.3.1 The Configuration Script

The configuration script is used in order to configure how the
automatic update task will execute the heuristic. This script de-
fines four variables:

• INITFRAMES: used in order to set how many frames are
used by the heuristic to do the initial tests. These initial
tests are used so the user may want the heuristic to make
the initial tests differently from the normal test;

• DISCARDFRAME: used in order to discard the first DIS-
CARDFRAME frame results, because the main thread can
be loading images or models and this can affect the tests;

• LOOPFRAMES: used to set up how frequently the heuris-
tic will be executed. If this value is set to −1, the heuristic
will be executed only once;

• USEHARDWARE: a variable to determinate which modes
will be used for the automatic update tasks;

• EXECUTEFRAMES: used to set how many frames are ne-
eded before the decision on changing the processor will
execute the next tasks.

An example of the configuration scrip file can be seen in algo-
rithm 6.1.

The automatic update task begins executing after the DIS-
CARDFRAME are executed. In the sequel, it executes INITFRA-
MES frames in the CPU cores and the next INITFRAMES in the
GPU. Afterwards, it decides where the next LOOPFRAMES frames
will be executed. If the LOOPFRAMES is greater than −1, it exe-
cutes EXECUTEFRAMES frames in the CPU cores and it executes
EXECUTEFRAMES frames in the GPU. Finally, it decides where

the next LOOPFRAMES frames will be executed and keep repea-
ting until the application is aborted.

6.3.2 The Heuristic Script

The heuristic script is used in order to distribute automatically
the tasks between the CPU cores and the GPU. This script defi-
nes three functions:

• reset(): reset all the variables that the script uses in order
to decide which processor will execute the task. This func-
tion is called after the LOOPFRAMES frames are executed.
The variable that are normally used by the heuristic are:

– CPUTime: an array that contains the sum of all the
elapsed times that the task has been processed in
this CPU thread;

– GPUTime: the sum of all the elapsed times that the
task has been processed in the GPU;

– numBodies: the number of bodies that have been
processed;

– initialBodies: the number of bodies in the begin-
ning of the processing.

• setVariable(elapsedTime, numberBodies, processor, th-
read): this function sets all the variables that the heuristic
uses. This function is called after running the EXECUTE-
FRAMES frames in each processor. The script that defines
this function can be seen on algorithm 6.2.

• main (): This is the function that executes the heuristic
and decides which processor will execute the task. This
function is called just before the LOOPFRAMES frames
are executed.
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Algorithm 6.1 Configuration Scritp

INITFRAMES ⇐ 20
DISCARDFRAME ⇐ 5
LOOPFRAMES ⇐ 50
USEHARDWARE ⇐ ALLAVAILABLE
EXECUTEFRAMES ⇐ 5

Algorithm 6.2 SetVariable Script

numBodies ⇐ numberBodies
if processor == CPU then

CPUTime[thread] ⇐ CPUTime[thread] + elapsedTime
else

GPUTime ⇐ GPUTime + elapsedTime
end if

The component in the architecture enables the implementa-
tion of any real-time loop model and heuristic presented in sec-
tion 5 with the adaptation for distribution of tasks between cores
of the same processor.

7 TEST CASE AND RESULTS

The test case corresponds to a flocking boids implementation.
The first well-know implementation of flocking boids was done
by Reynolds [22] were it simulated a flock of birds with basic
behavior rules. Each agent, also called boid, interacts with each
other in a simple manner. The authors had implemented this
example only to validate the framework of game loop proposed in
this work. This example was implemented in single thread CPU,
in a parallel CPU version and in a GPGPU version using CUDA.

The tests were performed in different computers with different
hardware configurations to better illustrate the framework beha-
vior. The hardware configurations are:

• Configuration 1: Intel Core 2 Quad 2.4 GHz CPU with 3 GB
of RAM and equipped with an NVIDIA 8800 GTS GPU (a
CUDA capable card) and the operating system is Windows
XP 32 bits.

• Configuration 2: AMD Turion Dual-core 2.0 GHz with 3 GB
RAM memory and equipped with NVIDIA 8200M GPU (a
CUDA capable card), running on Windows Vista 32 bits.

For each configuration, the initial number of boids is 10 and it is
increased until 2000 boids. The tests were made to run on CPU
mode only, multithread CPU mode, GPU mode only (if available)
and automatic mode. For heuristic of the automatic mode this

work has used an adaptation of the ”starting distribution” presen-
ted on section 5.2.1. The test results can be seen on Table 1 and
Table 2.

These tests demonstrate that when there a few bodies, a sin-
gle thread mode is faster than multithread modes (multithread
CPU and GPGPU), but when the number of bodies increases the
multithread modes are faster. The GPGPU mode is always faster,
in the tests, than the multithread mode. But a multithread ver-
sion is important in hardware configuration where a CUDA capa-
ble card is not available and the simulation requires a high num-
ber of bodies in the simulation. The tests also shows that the
automatic mode always behaves like the best case.

8 CONCLUSION

Multi-core hardware architectures are a tendency. Recent CPUs
now present quad-core processors and the GPUs present unified
architectures to be used as GPGPU. Also video game consoles
present multi-core processors (like the Xbox 360 and the Play-
station 3). This tendency is not only in increasing the availa-
ble processing power but also in rising the number processing
units (cores). Hence, the use of parallel processing is a way to
increase performance in real-time systems. For simulations that
use GPGPU and multithread loop models, they take advantage
on the available hardware and can present better performance.
With that in mind, this work has presented a survey on real-time
loop models for both single thread and multithread architectures
with or without the use of GPGPU. It also presents a framework
that makes possible to implement those real-time loop models,
performing automatic task distribution across processors. More-
over, the framework can adapt itself in order to achieve the best
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Table 1 – Performance rate of simulation in FPS with hardware configuration 1.

# Configuration 1

Bodies Single Thread CPU Multithread CPU GPGPU Automatic

10 5211 310 1412 1412

50 966 271 1334 1334

100 244 208 1236 1236

200 64 127 1098 1098

500 10 36 834 834

1000 2.6 9.8 586 586

2000 0.7 2.7 362 362

Table 2 – Performance rate of simulation in FPS with hardware configuration 2.

# Configuration 2

Bodies Single Thread CPU Multithread CPU GPGPU Automatic

10 138 92 111 138

50 131 89 107 131

100 142 77 105 142

200 46 50 102 102

500 7 16 95 95

1000 2.0 4.5 65 65

2000 0.4 1.2 32 32

performance on the available hardware, by checking the end user
hardware configuration and selecting the best loop model for
that configuration.

The automatic task distribution on real-time applications, like
games and simulations, is very important because the application
can make optimal use of the end user hardware. This causes a
better performance in the end.

This work also remarks that the proposed framework for real-
time loop models applies to others multi-cores hardwares like the
Playstation 3 and the Xbox 360 (with some modifications).
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