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In contrast to the perceptual capability of artificial systems, the biological perception of spatial patterns is a continuous cognitive
process. In particular, the visual system of primates has a space-variant nature where the resolution is high on the fovea and decreases
continuously to the periphery of the visual field. Moreover, the pattern perception and recognition may change, also continuously,
when orientation and depth changes. An interesting aspect is that the perceptual performance needs to increase when the structure
in recognition gets more complex in terms of irregular spatial contents (asymmetries). Based on these properties, we introduce a
computational measurement procedure where the asymmetries are “continuously” quantified using intersections among partially fuzzy
images. The asymmetries are quantified using the first gradient moment from the Gradient Pattern Analysis methodology. In this
application, the first gradient moment is a fuzzy parameter whose fuzzy deviation is set in the same level of biological perceptual
uncertainty. The performance of our approach is tested over texture variation perception in SAR (Synthetic Aperture Radar) images
and the results show that this measure can be useful for real-time machine navigation and, in a more general sense, for biologically
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1 INTRODUCTION

For a computational vision device, the perception performance
with moving and changing view areas of textures and objects is
gssential to perform dynamical pattern recognition and functional
orientation [1]. In biologically inspired artificial pattern percep-
tion (and recognition), the characterization level should change,
in a continuous way, when orientation and depth change [2]. In
this paper, a partial continuous perception process is proposed in
terms of a fuzzy-like reduced set of interconnected patterns whose
orientation is previously determined in order to quantify the per-
ceptual accuracy of a virtual robotic eye.

For a given extended image n x m, a sequence of sub-image
scenes represents the dynamical information to aid in understan-
ding an oriented motion, but increases the amount of data to be
processed by the system. Fortunately, research in dynamic-scene
analysis has shown that the recovery of information in many ca-
Ses is easier in a dynamical approach than in a static one [1]. In
this preliminary approach we are interested in the MCSO category
(Moving Camera and Stationary Objects), most important for na-
vigation applications.

In our approach, an original image is masked using a se-
quence of sub-images that represents the motion of a virtual ca-
mera. The most discrete motion is represented by a set of few
sub-images that can be detected by its level of asymmetry repre-
sented in the gradient field of the image. The partial continuous
motion (inspired in a biological mode) is represented by a set
of interconnected images having a common area defined from a
superposition of width =. The asymmetry profile of this partial
continuously fuzzy-like set is then compared to the discrete one.

In next Section the data and methodology are introduced. The
results and concluding remarks are in Sections 3 and 4, respecti-
vely.

2 DATA AND METHODOLOGY
2.1 SAR Images and Fuzzy-like Sequences

The image used in this paper was obtained in 2004 September 13,
by the SAR (Synthetic Aperture Radar) sensor of SIVAM's (Ama-
zon Vigilance System - http://www.sivam.gov.br) remote sensing
aircraft. The collection region is placed in the city of Machadinho
d'Oeste - RO, Brazil. The SIVAM's SAR sensors have, beyond other
characteristics, ability of imaging in two wave lengths (bands X
and L), multipolarization in band L (HH, W, HV and VH), inter-
ferometric way in band X and space resolution varying of 1.8 to
18m. Figure 1(a) shows an image of size 192 x 64 pixels, where

many texture patterns are visible. The discrete mode (Mode D)
is illustrated in Figure 1(b). The discrete covered mask contains
three 64 x 64 windows, representing the discrete motion percep-
tion process (from the left to the right or vice-versa). The partial
continuous mode — biologically motivated — (Mode B) is repre-
sented in Figure 1(c). The partial continuous mask contains four
64 x 64 windows, representing the continuous perception pro-
cess (from the left to the right or vice-versa). It is defined from
three superposing areas, each one of width T = 22 pixels. This
area represents a perceptual sensitivity greater than 20% of the
visual angle. This sensitivity is compatible to the biological con-
tinuous visual perception of primates. Actually, the visual system
of primates has a space-variant nature where the resolution is high
on the fovea and decreases continuously to the periphery of the
visual field.

Figure 1 — (a) An arbitrary SAR image composed by 192 x 64 pixels with
different textures. (b) The discrete covered mask containing three 64 x 64 win-
dows representing the discrete perception process (from the left to the right or
vice-versa). (c) The partial continuous mask containing four 64 x 64 windows
representing the continuous-like perception process (from the left to the right or
vice-versa).
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The T width in the fuzzy-mask shown in Figure 1(c) can be
gasily calculated from the formula:

t=[Ln*/T] —n, (1)

where 7 is total number of longitudinal pixels (here, T = 192),
n is the size of the discrete mask (here, n = 64) and L is the
number of images necessary to exactly cover 7. Considering a
generic view angle for the best perception, T represents the confi-
dence area where the perception is still high in a continuous visual
motion.

2.2 The Asymmetry Goefficient

Usually the characterization of irregular structures observed in di-
gital images is performed on the absolute values of the amplitude
in each pixel. However, the computational method Gradient Pat-
tern Analysis is straightforward and brings some advantages on
the traditional methodologies [3]. The gradient asymmetry coef-
ficient G 4 is intrinsically calculated on the amplitude differen-
ces (local gradients) given by the image gradient pattern [11]. As
the first gradient moment is very sensitive to small changes in
the phase and modulus of each gradient vector, it can distinguish
complex variability patterns even when they are very similar and
consist of a low amount of vectors.

Thus, a given scalar field of fluctuations (a » x m image,
for example) can be represented as a gradient field having Ny
vectors corresponding to the pixel-pixel local gradient (see Ap-
pendix).

In this context, for a given n x m global fluctuation pattern,
the gradient asymmetry coefficient is computed by means of the
asymmetric amplitude fragmentation operator [4, 5], that measu-
res the symmetry breaking of a given fluctuation lattice by means

of quantity:
_ Nc—Ny

N @
where Ny > 0isthe total number of asymmetric vectorsand N¢
is the number of Delaunay connections among them. The geome-
tric connection among the fluctuations is generated by a Delaunay
triangulation taking the middle points of the asymmetric vectors
as vertices (Figure 2(b)). Figure 3 shows a schematic diagram as
a short algorithmic description of gradient asymmetry coefficient
calculus.

Due to the possible changes in the phases of each fluctua-
tion (a vector in the gradient lattice), the parameter Ny is very
sensitive in detecting local asymmetric fluctuations (as irregular
textures inimages) on the gradient lattice [4, 5]. Moreover, for the

G4
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composition of irregular textures with the same level of probabi-
lity distribution, the G 4 parameter has high sensitivity in distin-
guishing both images from the mixture frame. Thus, we use this
operation in order to characterize the detection path during our vir-
tual camera motion taking into account the two modes (discrete
and partially continuous) shown in Figure 4. As we have L = 3
formode D and L = 4 for mode B, G 4 is obtained as a function
of L, the character of each sub-frame. The values of G 4(L) for
modes D and B are shown in the next Section.

Digital 2D Representation

| GradentField |

l Symmetric Vectors Remotion
’ Gradient Lattices ‘

l Delaunay Triangulation

’ Triangulation Field ‘

l Asymmetric Correlation

’ Gradient Asymmetry Coefficient ‘

Figure 2 — Steps for calculating gradient asymmetry coefficient.
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Figure 3 — Categories, based on the G 4 (L) measures, for texture variability of
the fuzzy-like frames: Low Texture Variability (LTV) and High Texture Variability
(HTV).

3 AFUZZY ASYMMETRY

Many applications of fuzzy sets and fuzzy logic can be found
in robotics and pattern recognition fields [1, 6]. In this work, our
fuzzy asymmetry will be defined in a similar way, as represented in
Figure 4, with two fuzzy categories related to the texture variability
of the analysed sub-image. The idea is to quantify this variabi-
lity by associating the values obtained for G 4 (L) to membership
functions defined in each fuzzy category. For now, the sub-images
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can have, up to a membership degree, low or high texture varia-
bility.

4 RESULTS

The asymmetry profiles for modes D and B are shown in Figure
4. Once the standard deviation of G 4(L) is less than 10— for
n = 64, from these curves one can distinguish with great ac-
curacy both modes. Due to the fuzzy area between the images
in mode B, the values of G have shown that the fuzzy-like ima-
ges have more asymmetries in their respective gradient field than
the discrete images. Also, the biological mode (Mode B) is more
nonlinear than the Mode D. This behavior is expected due to the
high sensitivity of the parameter G 4.

1,996
|
1,995 -
| |
-— | |
= 1,994 |
(L)
1,993 - n
1,992 . . .
1 2 3 4
FRAME L

Figure 4 — Comparison between the asymmetries profiles of Mode D (shortest
inferior one, represented by three measurements) and Mode B (the superior curve
represented by four measurements).

It is important to stress that the profiles showed in Figure 4
are representative of textures, without any explicitly morphologi-
cal characterization. In order to be used by subsequent tasks like
2-D and 3-D morphological classification [7, 8], the meaning of
asymmetries in the fuzzy width = must be defined taking into ac-
count the asymmetries of object (or areas) contours. For this pur-
pose the GPA technique has been adapted for one dimensional
manifolds as lines, curves and projections for different morpho-
logies [9].

5 CONCLUDING REMARKS

Detection of changes in two successive frames of a sequence is
a very important step for many applications. In this preliminary
work we have shown that the asymmetry coefficient is a good me-
asure for fuzzy-like sub-images representing a scene where dif-
ferent textures must be detected approximately in the same way
of an animal visual perception. Having introduced the T’/ fuzzy

like mask concept, the next step in this research is to consider a
fuzzy-like vertical depth in this approach. From a complete des-
cription of partial continuous perception for textures one can ad-
dress the problem of massive computation considering high re-
solution images visualized in more realistic color systems. Such
improvements will bring the mode C closer to a truly biological
mode. Further research will be also developed taking into account
the asymmetry profiles as a new parameter set to be used in su-
pervised learning processes for intelligent robotic cameras.
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APPENDIX
Gradient Pattern Analysis

A square gradient lattice, composed by N vectors, is defined as
the lattice /N x +/N where each lattice point has a gradient
vector identified by its norm and phase. For a square matrix of
amplitudes M (composed by /N x /N = N pixels) the res-
pective gradient square lattice is written as VM = [My, My].
The GPA gradient operation on M returns the X and ¥ compo-
nents of the two-dimensional numerical gradient. My and My
are the differences dy and dy in horizontal and vertical directi-
ons, respectively. The spacing between points in each direction
is assumed to be one. The first output M x is always the gradient
along the 2nd dimension of M, going across columns. The se-
cond output My is always the gradient along the 1st dimension
of M, going across rows. The algorithm for VM = [Mx, My]
takes forward differences on left and right edges and takes cente-
red differences on interior points. The procedure to calculate the
gradient pattern from an exemple of elementary matrix is shown
in Figure 5.

Gradient patterns can be symmetric or asymmetric according
to the GPA formalism. The distribution of vectors at each mesh-
point in the lattice can contain many with the same magnitude,
within a small error, and these will be symmetric pairs if they have
opposite origntations, and asymmetric pairs otherwise.

Let us consider two generic vectors V, and V; belonging
to the gradient lattice set. V,, and V;, are vectorially symmetric if
V, = =V, sothatthe resulting vector R, p = V,+Vy =0
(the null vector). In computational terms, the resulting vector is
null within a given tolerance for Euclidian norms €, (that assigns
to each vector the length of its arrow) and phases e, (that assigns
to each vector the angle of its orientation). In the original algo-
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Figure 5 — Example of an elementary Mo (3 x 3) matrix and its respective asymmetric gradient pattern. Calculation for

the matrix elements (1,1) and (2,2) are ilustrated as examples.

(a) (b) (c) (d)
0 0 0 0 1

01 0

000

Figure 6 — Examples of elementary Mg (3 x 3) matrices and their respective symmetric (a and b) and asymmetric gradient patterns
(cand d). (e) Example ofthe local Delaunay triangulation among vectors in a generic gradient lattice.

rithms, both tolerances are chosen equal to one tenth of standard
deviation of norms and phases.

Removing every pair of symmetric vectors from the gradient
lattice, the gradient pattern is symmetric when all possible re-
sulting vectors R,yp are null. Otherwise, the gradient pattern
is asymmetric. Examples of elementary Mo (3 x 3) symmetric
and asymmetric gradient patterns are shown in Fig. A2, where
the (a) and (b) have corresponding symmetric patterns with all
R,4p» = 0, while the (c) and (d) are asymmetric with Ny = 9,
the number of non-null resulting vectors in the gradient lattice.

Figure 6 shows that symmetry breaking in a gradient pattern
can be detected following changes in the norm and phase of each
vector in the lattice. As shown in Figure 6(d), an efficient geo-
metrical method to follow at the same time both changes is the
triangulation among the vectors arrowheads.

Journal of Computational Interdisciplinary Sciences, Vol. 1(3), 2010

Using the parameter Ny (number of asymmetric vectors)
and the number of connections among them, given by N¢, the
gradient asymmetry for a given gradient pattern can be nume-
rically characterized. Note that, in a given triangulation per-
formed on the gradient lattice, each triangle is as equilateral
as possible and obeys the empty circle criterion which allows
us to construct the triangulation pattern directly from the sam-
ple set. In computational geometry, the triangulation pattern
among the gradient vectors is generated calculating the Delaunay
triangulation among them, from where the computation of the con-
vex hull of a finite set of points is straighforward [10], hence al-
lowing the computation of the parameter N¢. Figure 7 shows the
respective Delaunay triangulation meshes for the asymmetric gra-
dient patterns of Figure 5. Note that the parameter N¢ increases
when the structural asymmetry of the gradient pattern becomes
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(@)
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(b)
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Figure 7 — Triangulation patterns for the asymmetric gradient lattices of Fig. A2: (a) for the
asymmetric gradient lattice on the left and (b) for the asymmetric gradient lattice on the right.

(a) (b)

(c)

Figure 8 — Gradient pattern analysis of an 8 x 8 arbitrary matrix: (a) the original digital image; (b) its asymetric gradient
field and (c) its corresponding triangulation field resulting G 4 = 1.8065.

more irregular (or disordered).

As shown by [3], an interesting property of the gradient
triangulation pattern is that N0 > Ny and the difference
N¢ — Ny will increase with Ny as

lim (N¢ — Ny) =~ 2Ny.

Ny—o0

Therefore, the so-called gradient asymmetry coefficient G4 =
NCN;VNV tends asymptotically to 2. This asymptotic regime im-
plies a very high accuracy of the value G 4 to compare different
gradient patterns of the same size.

Figure 8(a) shows an small image as an example so that its
corresponding square matrix has a 8 x 8 size. The correspon-
ding gradient pattern is shown in Figure 8(b) and represents the
asymmetric gradient lattice obtained after removing all symmetric
pairs from the gradient pattern. The respective triangulation pat-
tern is shown in Figure 8(c). Note that the asymmetry information
intrinsically appears in the triangulation lattice range.

It has been shown from several applications that GPA is ap-
plied in some cases where a given variable (or amplitude) 4 (s)

measured as a function of the discrete domain (s) shows evidence
of fine nonlinear variations (or scaling irregular roughness). Be-
sides its properties for asymmetric pattern classification, the es-
sential characteristic of GPA applications we consider here is that
the measure G 4 is fitted to gradient lattices either to compare
slightly different irregular patterns or to characterize pattern for-
mation in terms of gradient asymetries. Consequently, GPA is a
fine comparative analysis basically based on geometric and sca-
ling criteria that should be adopted to compare data having the
same size (number of points or pixels) where the associated am-
plitude values are in the same quantitative domain. Otherwise the
resulting gradient asymmetries can not be compared.
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