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ABSTRACT

The plasmodium of the slime mould Physarum polycephalum forms an extended and complex two-dimensional vein network that is
used to transport protoplasm through the giant cell. To obtain insights into the topology of this vein network, its graph structure needs
to be extracted from experimental images. This amounts to the task of extracting and reconstructing very tiny venules (elements) from
an image that covers a relatively huge area. A protocol containing a sequence of image processing and correction steps that allows
a highly accurate detection and extraction of the underlying graph has been developed and is described in detail. The analysis of the
extracted data reveals that the veins and venules of the plasmodium of P. polycephalum form a regular, cubic graph.
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1 INTRODUCTION

Transportation networks are of enormous importance in biologi-
cal and technical systems as well as in everyday life, and have,
therefore, attracted substantial scientific research interest. During
the last decades, the topological structure of such transportation
networks has been in the focus of numerous studies. It has been
found that many of these networks possess features that are ty-
pical for ‘complex dynamic networks’, such as small-world pro-
perties or scale-free behaviour [1, 2, 3]. This means that the in-
dividual nodes of the networks have different connectivities, and
that such networks may possess some highly connected nodes
that act as hubs, as well known from air-transportation networks
[4, 5].

Generally, in studies on complex real world networks the
networks are obtained from data already available in electronic
form in large databases. This approach has successfully been
used to obtain and analyse real world networks as diverse as
transportation (like the air-transportation [4, 5], railway [6], ur-
ban railway networks [7], and electric power grids [1]), economic
[8], and social networks (like scientific co-author [9] or co-staring
film actors networks [1]). For an overview, see for instance refe-
rences [2, 3].

While networks, whose data are readily available in electro-
nic form are frequently studied, the situation changes dramati-
cally when it comes to networks, whose graph structure data must
be first measured, digitised, and extracted from images or pho-
tographs, before it may finally be analysed. Examples of such
data are blood vascularisation networks [10] and insect trails and
galleries [11, 12], as well as many types of data collected by
monitoring satellites.

The challenge of extracting the graph underlying such net-
works stems from the fact that one needs to follow the develop-
ment of the network over time in an area that is relatively large
compared to the size of the entities (veins, trails, tunnels, etc.)
that form the network. This means that well developed imaging
techniques and analysis tools [13] may be required. Often, how-
ever, a combination of methods is necessary which is optimi-
sed for the detection and high-accuracy reconstruction of data on
multiple scales.

Such a situation is encountered when it comes to the analy-
sis of the vein network formed by the plasmodium of the acel-
lular slime mould Physarum polycephalum. This slime mould
(myxomycete) forms a giant single cell, a so-called syncytium,
whose extension may even reach some square meters. This cell
forms a vein network, through which its protoplasm is transpor-

ted to and fro in a regular basis [14, 15]. It has been shown
that the plasmodium is able to optimise the structure of its vein
network [15, 16]. In the presence of multiple food sources, the cell
tries to connect these food sources through its vein network, how-
ever at a minimum cost. This is achieved by shrinking all veins
other than those providing the direct connection between the food
sources. This property of P. polycephalum has been exploited to
let the amoeboid slime mould solve a maze [17] or other graph
theoretical problems, like constructing Steiner minimum pathway
trees [18], or finding minimum-risk pathways in a situation, where
the slime mould is subjected to two competing risk (or cost)
factors [19].

Surprisingly, in spite of its ability to solve graph theoretical
tasks, the graph properties of the plasmodial vein network of P.
polycephalum have not been addressed so far. In earlier papers,
the graph is described colloquially as a more or less regular vein
network [20], while recently, it has been modelled as a weighted
planar network whose central nodes have a somewhat lower con-
nectivity than more peripheral nodes [21].

In the present article, we report on methods to detect and ex-
tract the vein network from P. polycephalum from acquired expe-
rimental images. The objective is to obtain the graph structure of
this vein network at large scales, while individual venules might
be very tiny. The paper is organised as follows: The next sec-
tion contains the experimental methods, while section 3 reports
on the individual steps of image and data processing applied to
the data. Finally, in section 4 we subject the extracted skeleto-
nised network to graph analysis, thus providing a proof of con-
cept that the graph characteristics may be extracted and determi-
ned from our data. Last but not least, we finish the article with
a brief Discussion.

2 EXPERIMENTAL METHODS

Sclerotia of the Physarum polycephalum strain HU195 × HU200
[22] were obtained from plasmodia grown on moist filter paper
and fed with oat flakes (Kölln Flocken) at 21◦C in the dark. The
cellular material on filter paper was dried and stored in the dark,
thus inducing the transition to sclerotia. The sclerotium is a dor-
mant, dehydrated form of P. polycephalum that may convert back
into the plasmodium whence the environmental conditions turn
favourable again.

Experiments were started by placing a rectangular filter pa-
per stripe containing a sclerotium on a 1% (w/v) agar gel close
to the edge of a covered 10 × 10 cm2 square Petri dish. About
25000–26000 s later, the P. polycephalum develops back into a
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plasmodium which starts to explore the gel in the Petri dish. This
growing plasmodium expands over the gel layer and begins to
form a network of veins and venules.

The Petri dish was illuminated homogeneously from below
by a cold light source emitting white light and monitored from
above by a 8 bit CCD camera (Hamamatsu C3077). The images
were collected with a resolution of 768 × 576 pix2 corresponding
to an area of 61.5 × 46.1 mm2 (i.e. a resolution of 0.08 mm pix-1)
at a sampling frequency of 0.1 Hz. The frames contain grey-value
images that have 256 grey values. The images were transferred
to a computer for later data processing. This comprises the de-
tection and extraction of the network from the acquired images.
The processed data are used for the analysis of the properties of
the plasmodial vein network.

3 IMAGE PROCESSING

To extract the topological structure of the plasmodial vein net-
work of Physarum polycephalum from the acquired images, a
series of image processing operations and corrections must be
performed. These manipulations are compiled in the flow chart
presented in Figure 1. Concomitantly, the network, as it appears
after the most prominent of these manipulations, is depicted in
Figure 2.

3.1 Background subtraction

To remove constant structures and possible illumination gra-
dients from the images, all acquired images are background-

subtracted. The image used as ‘background image’ is the last
frame acquired before the plasmodium begins to invade the area
of observation. This image is subtracted from all further images,
yielding the background-subtracted data set (Fig. 2).

3.2 Binarisation

In the next step, the background-subtracted images are binari-
sed. Due to the occurrence of some very thin venules in the vein
network, any possible choice of threshold value may lead to the
‘loss’ of a few pixels in the binarised images. In other words, the
grey values of some pixels of venules lay just below the binarisa-
tion threshold. Therefore, a series of correction algorithms have
to be applied to repair these mistakes.

3.3 Correction algorithms for binarised pictures

Six correction operations were applied to the binarised data in or-
der to account for and to reinsert some missing pixels, which have
just fallen short at the binarisation process. Hence, the corrections
serve two purposes. At the one hand, they attempt to reconnect
venules that were ‘erroneously’ ruptured by the image processing
steps. At the other hand, some of the corrections are necessary
to satisfy the algorithmic requirements for computing the length
of vein segments (section 3.5.2).

The vicinity of every central black pixel (which belongs to the
graph) is analysed using a sliding 3 × 3 or 5 × 5 pix2 window.
In this window, the neighbourhood of the central pixel is exami-
ned, and depending on the nature of its surrounding, one of the
following six correction algorithms may be applied.

Figure 1 – Sequence of data processing steps applied to the acquired images of the growing vein network of
Physarum polycephalum. The blue boxes represent image processing operations while the green boxes represent
corrections to the binarised pictures.
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Figure 2 – Plasmodial vein network of Physarum polycephalum 62000 s after the start of the experiment. (top left) Background-subtracted image; (top right)
Binarised network after all corrections, as presented in Figure 1; (bottom left) Skeleton of the binarised network; (bottom right) Superimposition of the extrac-
ted skeletonised graph on the background-subtracted network. The recognised segments and nodes of the graph are labelled in green and red, respectively, and
superimposed on the vein network. Dimensions: 61.5 × 46.1 mm2.
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3.3.1 Single-pixel diagonal correction (1DC)

The single-pixel diagonal correction (1DC) is solely required due
to requirements originating from the length measurement of the
veins and venules (section 3.5.2). Since this algorithm operates
only along the horizontal and vertical directions of the pixel ma-
trix, diagonal venules must be corrected by turning one pixel in
the adjacent off-diagonal black, as demonstrated in Figure 3a.

Figure 3 – Schematic drawing of the corrections performed by (a) the single-
pixel diagonal correction (1DC), (b),(c) the twin-pixel skewed horizontal and
vertical gap filling (2SC), and (d) the twin-pixel diagonal correction (2DC) al-
gorithms. In all pictures the crosses mark the operations where white pixels
will become black. Cases that are symmetric to the ones shown here exist, but
they are not presented in the Figure.

3.3.2 Single-pixel horizontal and vertical gap
filling (1HC)

Often, single faint pixels belonging to a venule are not recognised
in the graph. To correct for such one-pixel gaps, gap filling al-
gorithms were used, which scan the matrix of pixels in horizontal
and vertical directions. Whenever a white pixel is encountered in
between two black pixels, the white pixel is converted into a black
one, thus reconnecting the segments of the venule.

3.3.3 Twin-pixel horizontal and vertical gap
filling (2HC)

In analogy to the 1HC algorithm, the 2HC algorithm reconnects
two horizontally or vertically oriented black pixels by transfor-
ming the two intermittent pixels into black ones.

Note that these operations are not effectuated if the missing
sequence exceeds two pixels, i.e., if there are more than two white
pixels in between two black pixels. This limit is implemented to
avoid the formation of spurious edges in the graph.

3.3.4 Twin-pixel skewed horizontal and vertical
gap filling (2SC)

The gap filling provided by the 1HC algorithm is restricted to pi-
xels, where a black, a white, and another black pixel are perfec-
tly aligned horizontally or vertically. However, the veins of the
network grow at any possible angle with respect to the orientation
of the array of pixels. To account for a sequence of pixels that

are ‘tilted’ or ‘skewed’, so that they lay slightly off the horizontal
or vertical, the 2SC algorithm was developed. It deals with situ-
ations as depicted in Figure 3b,c, and it provides a correction by
connecting the black pixels as shown in Figure 3b,c. Note that
there are additional permutations of that theme which are acces-
sible by rotation of the positions of the black pixels.

3.3.5 Twin-pixel diagonal correction (2DC)

As the 2HC algorithm is the two-pixel extension of 1HC, the twin-
pixel diagonal correction (2DC) is the extension of 2SC. Here,
diagonal gaps of two white pixels lying between two black pixels
are corrected. Due to the necessary presence of horizontal and
vertical connections between the black pixels in order to count
the pixels and hence to determine the length of a segment (sec-
tion 3.5.2), a total of 5 pixels are turned into black ones, as shown
in Figure 3d.

3.3.6 Erosion of isolated pixels (PX)

Last but not least, isolated pixels are deleted. If a black central
point has no neighbours belonging to a vein or venule, it is con-
sidered spurious and deleted (i.e. it becomes white).

3.3.7 Effect of the sequence of correction algorithms

For all corrections performed, any pixel that was added by a cor-
recting operation is marked and excluded from participating at
further corrections. Nevertheless, it is important to note that the
sequence by which these correction algorithms are applied is
not commutative. To determine the best sequence of the correc-
tion steps, their sequential order was permutated. As seen from
Table 1, which compiles the individual permutations studied, the
first and last correction steps are the same for all permutations:
the first step always is the single-pixel diagonal correction (1DC),
while the last always is the erosion of isolated pixels (PX).

Two criteria are used to determine the quality of the indivi-
dual sequences of correction algorithms. The first criterium is
a visual comparison, whether the reconstructed and corrected
network still matches to the photographed network as depicted
in the original or background-subtracted images. The second cri-
terium demands that the number of correction steps effectuated
at the skeletonised graph be as low as possible (Fig. 4). In other
words, a low abundance of corrections is preferred, in order to
avoid any equivocal corrections.

The abundance of the performed corrections steps was deter-
mined for each of the six permutations of Table 1 and is shown

Journal of Computational Interdisciplinary Sciences, Vol. 1(3), 2010



“main” — 2010/5/7 — 19:29 — page 246 — #6

246 DETECTION, EXTRACTION, AND ANALYSIS OF THE VEIN NETWORK OF Physarum polycephalum

1 2 3 4 5 6

10

100

1000

10000

lo
g 
(a
bu
nd
an
ce
)

permutation

 1DC
 1HC
 2HC
 2SC
 2DC
 PX

Figure 4 – Abundance of correction steps for the different permutations of the correction algorithms, as compiled in Table 1.
Note that the number of corrections is plotted on a logarithmic scale.

Table 1 – Permutations of the application sequence of the correction algorithms. The acronyms stand for:
1DC single-pixel diagonal correction; 1HC single-pixel horizontal and vertical gap filling; 2HC twin-pixel
horizontal and vertical gap filling; 2SC twin-pixel skewed horizontal and vertical gap filling; 2DC twin-pixel
diagonal correction; and PX erosion of isolated pixels.

Permutation Permutation Permutation Permutation Permutation Permutation

1 2 3 4 5 6

1DC 1DC 1DC 1DC 1DC 1DC

1HC 1HC 1HC 2DC 1HD 2SC

2HC 2HC 2DC 1HC 2SC 1HC

2SC 2DC 2HC 2HC 2HC 2HC

2DC 2SC 2SC 2SC 2DC 2DC

PX PX PX PX PX PX

in Figure 4 in logarithmic scale. Note that the most prominent
changes in the frequency of corrections occurs in the abundance
of 2SC corrections (orange line in Fig. 4), which is much larger
in amplitude than the changes in the number of 2DC correcti-
ons (green line in Fig. 4). Consequently, it becomes evident that
the permutations 1–4 perform similarly well, while the number of
correction steps starts to increase for permutation 5 and becomes
considerably higher for permutation 6. The lower performance of
permutation 5 and specially that of permutation 6 is due to the
early position of the 2SC corrections in the sequence of correc-
tions (Table 1). When this algorithm is executed too early in the
sequence of correction steps, it inserts a high number of ‘correc-
ted’ pixels, which may cause false determination of edges during
the skeletonisation of the network.

As mentioned above, permutations 1 to 4 perform similarly
well. In order to compile with our criterion to minimise the num-
ber of correction steps, we use permutation 1, which fulfills this
requirement.

3.4 Skeletonisation

The binarisation and the correction algorithms yield a binarised
and ‘repaired’ network, whose veins have varying thickness. To
extract the underlying graph, this extended network is collap-
sed to its line skeleton by applying the line thinning algorithm of
Zhang & Suen [23]. This operation yields a network whose veins
have the uniform thickness of a single pixel. Such networks may
be conveniently analysed for the occurrence of nodes and the
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lengths of the connecting edges (i.e. veins and venules) may
easily be measured.

The skeletonised graph is once more subjected to a single-
pixel diagonal correction (1DC). This operation is required to
make any diagonal edge of the skeletonised graph accessible for
the measurement of the length of the veins. The rationale for this
procedure will be explained in section 3.5.2.

The skeletonised graph is compared with the background-
subtracted images. A superposition of the extracted graph on the
image of the plasmodial vein network shows a very good corres-
pondence of the graph with the network (Fig. 2). In this figure,
the recognised segments and nodes are plotted in green and red,
respectively. A comparison between the extracted graph and its
original, i.e. the plasmodial vein network, shows that the network
is very successfully mapped on the graph. The latter is now avai-
lable for analysis.

3.5 Determination of nodes and edges of the graph

The algorithms used to identify the nodes and edges operate as
sliding windows on the matrix that contains the binarised and cor-
rected image. The entries of this type of matrix are either 0 (black)
or 255 (white). The search algorithms operate only in horizontal
and vertical direction, i.e. operations along the diagonals are not
performed.

3.5.1 Node detection

The matrix of the binarised and corrected images is scanned by a
5 × 5 pix2 window and the neighbourhood of the central pixel is
investigated. A node corresponds to any black pixel which has th-
ree or more black pixels in its 3 × 3 pix2 vicinity. Whenever such
a pixel is detected, its value in the matrix defining the binarised
image is set to 50.

Due to the necessary application of the 1DC correction after
binarisation, three types of nodes exist: in addition to nodes made
of a single pixel, there are a few nodes comprising either 4 or 6
pixels. They arise when diagonal segments hit a node. The 1DC
algorithm causes this node to be more extended. In order to avoid
multiple counting, the algorithm first searches for the most exten-
ded (6-pixel) nodes, before it repeats the operation for the 4- and
1-pixel nodes. These 4 and 6 pixel nodes are also marked in the
matrix by the value 50.

The connectivity of a node is found by summing up over the
number of segments connected to the individual node; in other
words, the number of black pixels surrounding the nodes are
counted.

3.5.2 Edge detection and measurement
of edge lengths

Starting from a detected node, the black pixels connected to this
node are tracked. Again, this tracking is performed in horizon-
tal and vertical directions only. The coordinates of the surroun-
ding black pixel are marked, and the center of the 3 × 3 pix2 se-
arch window is moved to this pixel. Now the operation is started
again, searching for horizontal or vertical neighbouring black pi-
xels. This operation is repeated as long as no other node is hit, or
as a pixel is found, whose surrounding pixels are all white. In the
former case, the edge connects two nodes, in the later the edge
(or vein) terminates.

Once a segment is found, the pixels forming it are marked.
The programme then returns to the starting node in order to track
any additional edge departing from the node. Once all segments
leaving from a node have been detected, the programme jumps to
the next node.

To obtain an accurate count of the edges, the detected edges
should be marked in a matrix. This labelling should prevent mul-
tiple counting of the edges.

Finally, the lengths of the edges are determined by counting
the number of detected black pixels along every single edge (or
venule).

4 Graph theoretical analysis of the P. polycephalum
vein network

To gain a better understanding of the organisation of the plasmo-
dial vein network of P. polycephalum, the characteristics of this
network were analysed. The veins or venules form the edges of
the graph and connect adjacent nodes. The graph G is given as

G = W ∙ A (1)

where A is the adjacency matrix, while W is the matrix contai-
ning the lengths of the veins.

Interestingly, each node is always connected to exactly three
other nodes, yielding a node degree k of 3 (Fig. 5). Graphs with
delta distributed node degrees are called regular, and in the case
of k = 3, cubic graphs. Regular graphs are characterised by a
constant ratio of edges to nodes M = 1

2 k N , where M and N
are the number of edges (veins) and nodes, respectively. This
correlation is indeed observed for the P. polycephalum vein
networks, where M = (1.56 ± 0.06)N . The small deviation
from the predicted value of 1

2 k = 1.5 is due to some venules
that are ruptured into two disconnected segments by the process
of coarsening of the vein network.
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Figure 5 – Node degree k (or connectivity) of the individual nodes of the vein
network of P. polycephalum as measured at different instants in time. Nodes have
almost exclusively a node degree of k = 3.

We have also studied the distribution of the lengths of the
veins between connected nodes. The lengths of the veins were
counted in pixels, where 1 pixel corresponds to 0.08 mm. The
distribution of the lengths of the vein segments follows the expo-
nential dependence

P(x) = P0e−γ x (2)

where P(x) is the probability to find a segment of length x in
the network. The experimental data as well as the fit according to
eq. 2, where γ = 0.104 ± 0.004, is presented in Figure 6.

Figure 6 – Exponential scaling of the length distribution of vein segments of the
network shown in Figure 2.

The analysis of the network structure of the plasmodial vein
network of P. polycephalum reveals a constant node degree k =
3. Such a vein network forms a classical graph, namely a regular

graph. This graph is weighted by the different lengths of the vein
segments, whose abundance shows a exponential distribution.

5 DISCUSSION

The present article reports on the detection and extraction of the
vein network of the myxomycete Physarum polycephalum from
data acquired in the form of images. In order to obtain an insight
in the structure of the network formed by the veins and venules,
an area has to be monitored, which is relatively large compared
to the size and extension of the individual venules. This results in
the challenging task of extracting tiny objects from the images.

We have presented a protocol that contains image proces-
sing operations and image correction algorithms (Fig. 1), which
is able to extract the network of P. polycephalum from images.
It has been found, that correction algorithms involving the correc-
tion of a single pixel should be performed prior to any algorithm
that corrects more than one pixel at a time. If twin-pixel correc-
tion algorithms are performed too early in the sequence of cor-
rections, a substantially larger number of individual corrections
are executed. This leads to binarised graphs that contain areas
(or islands) of black pixels, a situation which complicates or even
jeopardises the graph theoretical analysis of the extracted graph.

In the special case of the plasmodium of P. polycephalum,
the choice of a suitable threshold for the binarisation of the back-
ground subtracted image turns out to be important. This is due
to the fact that the apical zone of the plasmodium, i.e. the do-
main exploring the surroundings of the cell (seen in the bottom of
Fig. 2), has not yet established a vein network. It consists of an
extended membrane that contains streaming protoplasm. In the
binarised images the apical zone is seen as a domain of extended
areas of black pixels. This area has to be excluded from the analy-
sis, since any skeletonisation of this domain leads to the emer-
gence of edges, whose positions do not necessarily correspond
to the position of the cytoplasmic fingers.

Our preliminary analysis of the graph spanned by the veins
and venules of Physarum polycephalum reveals the graph as
being a regular graph. Furthermore, the evolving graph of P.
polycephalum remains regular at all times, never forming any
hubs. From a graph theoretical aspect, this contrasts to the
vast majority of complex real world networks studied recently,
which were shown to possess ‘small-world’ or ‘scale-free’ charac-
teristics. These characteristics are completely absent in the vein
network of P. polycephalum.

The regular graph of P. polycephalum venules is weighted by
the lengths of the veins connecting the nodes. The length distri-
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bution was found to be exponential. Clearly, there is also another
weighting that needs to be examined in future, namely the weigh-
ting by the thickness of the veins. This should also provide some
insights into the protoplasmic fluxes present in the vein network.

In addition to these first insights into the graph topology, our
preliminary studies of the vein network of P. polycephalum pro-
vide a proof of concept that the extracted data can be used to
characterise the graph properties of the vein network. A detailed
analysis of the graph properties of this plasmodial vein network
and of its evolution is in progress.
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