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Abstract

We describe program Hiperwalk, which is a new simulator of the main quantum walk models using
high-performance computing (HPC). The simulator is able to generate the dynamics of discrete-time
quantum walks and staggered quantum walks, and will be able simulate continuous-time quantum walks
and Szegedy’s quantum walks. It has an user-friendly input and is able to use hybrid HPC architectures,
which includes the main ones available nowadays. The simulator outputs the main statistics associated
with the probability distribution of the quantum walk in data files and automatically generates plots.
The simulator uses open-source non-proprietary codes and employs freeware languages: Python, Neblina,
Gnuplot, and OpenCL.
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algorithms.

1. Introduction

The discrete-time quantum walk (DTQW) model on the line was introduced by Aharonov et al. [4] and it
was generalized to regular graphs in Ref. [3]. In the DTQW, the particle hops from site to site depending on
the value of an internal degree of freedom, which plays the role of the coin. Quantum walks on N -dimensional
lattices were studied by many authors [20, 32, 24] and display the key feature of spreading quadratically faster
in terms of probability distribution, compared to the classical random walk model on the same underlying
structure [5]. The DTQW was successfully applied to develop quantum algorithms, specially for searching a
marked node in graphs [30, 8, 26]. There are other models of quantum walks and some of them do not use
an auxiliary Hilbert space and have no coin. The continuous-time quantum walk model introduced by Farhi
and Gutman [16] and the staggered (or coinless) quantum walk model formally defined in [27] are examples
of such models. The staggered model can be used to search a marked node on two-dimensional finite lattices
with the same number of steps (asymptotically in terms of the system size) compared to the coined model,
with the advantage of using a smaller Hilbert space [9]. Going to the opposite direction, Szegedy’s quantum
walk model [31] use the largest Hilbert space the dimension of which is the square of the dimension of the
staggered model.

In this work, we describe a new high-performance quantum-walk simulator, called Hiperwalk2, that can
be used to obtain the dynamical evolution of the quantum walk models and can be used to calculate the
main statistical distributions associated with the probability distribution. The simulator has three main
parts: 1) an user interface built in Python that generate matrices and vectors based on the input to be used

1E-mail of Corresponding Author: portugal@lncc.br
2Site http://qubit.lncc.br/qwalk has downloading and installation instructions.
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in the core of the program, 2) a core program written in the Neblina language (developed by one of us)
which is able to run matrix calculations in heterogeneous HPC architectures, 3) a module that calculates
the main statistical distribution and generates data files, output files and plots. In the present version, only
the DTQW and the coinless (or staggered) models were implemented and described.

To the best of our knowledge, Hiperwalk is the only simulator of its kind. Other kind of QW simulators are
pyCTQW for continuous-time quantum walk [18], qwViz for visualisation of quantum walks on graphs [10],
and QWalk for simulation of DTQW on one- and two-dimensional lattices [22]. A version of QWalk using
HPC was described in Ref. [29].

2. Quantum-Walk Models

The goal of the new simulator is to generate the dynamics of the main quantum-walk (QW) models
known in Literature in a generic graph. In this Section we briefly describe each one pointing out the main
references. There are four models: 1) Discrete-Time Quantum Walk (DTQW), 2) Continuous-Time Quantum
Walk (CTQW), 3) Szegedy’s Quantum Walk, and 4) Staggered Quantum-Walk.

The Discrete-Time Quantum Walks were the first to be proposed [4] and it was successfully used to solve
the problem of quantum spatial search on lattices and hypercubes. Shenvi et al. [30] developed a quantum
search algorithm for the hypercube with time complexity O(

√
N), where N is the number of vertices of

the graph. This result has a quadratic gain over the corresponding classical algorithm. Ambainis et al.
(AKR) [8] used a similar method to develop a quantum search algorithm in two-dimensional lattices in time
O(
√
N logN) almost quadratically better then the time O(N logN) of the classical algorithm. Tulsi [33]

introduced an extra qubit in the system and improved the complexity of the AKR algorithm. Ambainis et
al. (ABNOR) [6] also showed how to eliminate amplitude amplification method used in the AKR algorithm
by doing post-processing calculations. Moreover, Refs. [2, 17, 1] describe similar methods to many other
graphs generating new efficient quantum algorithms.

The concept of Continuous-Time Quantum Walks were proposed by [16]. One of the first applications
was the NAND-tree evaluation in time O(

√
N) developed in Ref [15]. Discrete versions of the latter were

presented in [11, 7, 12] requiring time N
1
2
+O(1). The evaluation of minimax trees using N

1
2
+O(1) oracle

queries was discussed in [13].
Szegedy’s quantum walk model presents general results for the spatial search problem in broad classes of

graphs. Szegedy [31] showed that the quantum hitting time has a quadratic gain compared to the classical
hitting time for the problem of detecting whether a set of vertices is marked, in connected, regular and non-
bipartite graphs. Santos and Portugal [28] analyzed the search problem on the complete graph and on the
cycle. With different proposals, Magniez [21] and Krovi et al. [19] developed quadratically faster quantum
algorithms to find a marked vertex on ergodic and reversible Markov chains.

The Staggered Quantum-Walk model was discussed in some early references, such as [23, 25, 14] and
the application for searching on lattices was performed numerically. Ambainis, Portugal and Nahimov [9]
analytically proved that the staggered quantum walk in those lattices, using the same tessellation proposed
by Falk [14] has complexity O(

√
N logN). This result has the same complexity of the algorithm that

uses quantum walks with coin. However, it is important to note that the staggered quantum walk needs
no additional space and therefore this algorithm uses minimal memory. Here, we use Falk’s method to
implement this model. The evolution operator is defined by a graph tessellation. The simplest line or
even-cycle tessellation is based on two sets of orthonormal vectors∣∣u0x〉 = cos

α

2
|2x〉+ eiφ1 sin

α

2
|2x+ 1〉, (1)∣∣u1x〉 = cos

β

2
|2x+ 1〉+ eiφ2 sin

β

2
|2x+ 2〉, (2)
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which are used to define the reflection operators

U0 = 2
∞∑

x=−∞

∣∣u0x〉〈u0x∣∣− I, (3)

U1 = 2

∞∑
x=−∞

∣∣u1x〉〈u1x∣∣− I. (4)

For a N -cycle (N must be even), index x runs from 0 to N − 1. One step of the quantum walk is driven by
the unitary operator U = U1U0.

3. Simulation using HPC

The notable progress of GP-GPU architectures in recent years and the emergence of many other accel-
erator architectures like FPGA, IBM’s Cell and Intel’s MIC (Xeon Phi) indicate a strong tendency towards
the heterogeneity in HPC. In this context, we use the Neblina3 language to simulate, using parallel resources,
QW models.

Neblina is a language focused on establishing a parallel computing layer requiring minimal knowledge of
the user about parallel programming. For programming in Neblina, the operations are sequential indepen-
dently of the underlying architecture. The Neblina interpreter sends the data to the parallel processing unit
(either CPU or GPU or other) increasing productivity. This is transparently performed by using OpenCL
paralell API, which accesses heterogeneous architectures. The simulation of QWs uses highly scalable matrix-
matrix and matrix-vector operations that allow speedups when we use Neblina as the core program. We
are interested also to obtain the statistical data of the dynamics (standard deviation, limiting distribution,
mixing time and so on) of QW models. The simulation and the calculation of those metrics can generate
large overheads in the overall processing time. Besides, some theoretical results can only be confirmed by
performing simulations with large number of elements (asymptotic behavior).

Our simulation of QWs goes through three distinct major steps:

• Conversion of the input parameters into unitary operator U , which describes the dynamical evolution.
These parameters can be the underlying structure (line, lattices, cycles and others), coin operator,
initial states, and so on.

• Application of unitary operator U in a quantum state |ψ〉 generating vector U i|ψ〉 for i = {1, . . . , T}
for large values of T .

• Statistical interpretation of U i|ψ〉 for i = {1, . . . , T}. This includes the probability distribution, stan-
dard deviation, limiting distribution, and so on.

For the first and last steps we use the Python programming language that allows a high abstraction and
complex data structures facilitating the process of converting input parameters into matrices and vectors.
Second step is certainly the most costly one. In this step we use the OpenCL language to parallelize the
application of matrix U on the quantum state |ψ〉 (a vector). So, this part can be performed in a GP-GPU
or in a CPU multicore using the same program code.

In addition, our simulator generates understandable output data by creating automatically gnuplot sripts.

4. Hiperwalk: High-Performance Quantum-Walk Simulator

Hiperwalk4 is a freeware open-source program, available in GitHub5, that allows the user to perform
simulations of quantum walks on graphs using HPC. The user can use the parallel resources of the computer,
such as accelerator cards, multicore CPU and GPGPU to speedup the overall process without knowing

3http://www.lncc.br/∼pcslara/neblina
4Site http://qubit.lncc.br/qwalk has downloading and installation instructions.
5https://github.com/
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parallel programming. It is under development and employs Python, OpenCL, Neblina6, and Gnuplot
languages.

In the current version of Hiperwalk, the input text file is the only interface between the user and the
simulator. The main input commands are:

WALK <MODEL> selects a quantum walk model. Currently it can be DTQW, STAGGERED, CUSTOM. This is a
required command.

DIRECTORY <NAME> defines a directory path which is used by the simulator to save the output files. This is
a required command. <NAME> must not have SPACE of TABULAR character.

GRAPH <TYPE> <SIZE> defines the graph for the walk. This is a required command.
<TYPE> can be LINE, CYCLE, LATTICE, TORUS.
<SIZE> is the number of vertices. It must be a positive integer or nonexistent (for infinite graphs).

STEPS <T> defines the number of steps until which the system will evolve. <T> must be a positive integer.
This is a required command.

ALLSTATES <N> forces the simulator to save the states for all time steps are multiple of N. If N=1, all
intermediate states will be saved. This keyword changes the number of points used in the statistics
files. This parameter is optional. The default is to save only the last step. The value of N must be a
positive integer (N≥ 1).

PLOTS TRUE forces the simulator to generate the graphics of the mean and the standard deviation using
Gnuplot. This command can be suppressed. The default is FALSE, which avoids to create the graphics.

PLOTZEROS TRUE forces the simulator to save and print probabilities that are exactly zero. This command
can be suppressed. The default is FALSE, which avoids to save and plot zeros.

ANIMATION TRUE forces the simulator to save data and make a plot of the probability distribution at each
time step. At the end, the simulator generates an animation file called evolution.gif. This command
can be suppressed. The default is FALSE, which avoids to create the animation.

VARIANCE TRUE forces the simulater to plot the variance. The default is FALSE.

HARDWAREID <N> forces the simulator to use the Nth processor unit (parallel device), which is described by
command neblina -l. The default value of N is 0. The value of N must be a non-negative integer.

Comments can be introduced by putting the character # in the beginning of the each line.

4.1 Commands only for DTQW

BEGINSTATE · · · ENDSTATE

This block defines the initial state of the quantum walk. For the coined case, the initial state has the
form |ψ〉 =

∑
i αi|ci〉|pi〉, where αi ∈ C, |ci〉 is a coin state, and |pi〉 is a position state. Each term in

the sum must be entered in a line as follow:

<(αi) =(αi) ci pi

For example, state |ψ〉 = 1√
2
(|0〉+ i|1〉)|0〉 corresponds to

BEGINSTATE

0.70710678 0 0 0
0 0.70710678 1 0
ENDSTATE

6Site http://qubit.lncc.br/neblina can be used to download the Neblina programming language.
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BEGINCOIN · · · ENDCOIN

This block defines the coin operator. The options are HADAMARD <N>, FOURIER <N>, GROVER <N>, which
produces the Hadamard, Fourier, or Grover operators (dimension N×N). A customized coin matrix can
be defined by inputing each entry aij + i bij as follows:
BEGINCOIN
a11 b11 . . . a1N b1N
...

. . .
...

aN1 bN1 . . . aNN bNN
ENDCOIN

4.2 Commands only for STAGGERED

One-dimensional staggered walks:

BEGINSTATE · · · ENDSTATE

This block defines the initial state of the quantum walk. For the staggered case, the initial state has
the form |ψ〉 =

∑
x αx|x〉. Each term in the sum produces a line with the syntax

<(αx) =(αx) x

where αx ∈ C are the amplitudes and |x〉 is a position state in the computational basis. For example,
state |ψ〉 = 1√

2
(|0〉 − i|1〉) corresponds to

BEGINSTATE

0.70710678 0 0
0 -0.70710678 1
ENDSTATE

POLYGONS <N> defines the number of vertices inside the polygons of both tessellations. <N> must be a
positive integer.

DISPLACEMENT <N> defines the displacement of the second tessellation toward positive x. <N> must be a
non-negative integer.

BEGINTESSELLATION
<(a1) =(a1) . . . <(aN ) =(aN )
<(b1) =(b1) . . . <(bN ) =(bN )

ENDTESSELLATION

For CYCLE or LINE, amplitudes a1 to aN , where N is the number of vertices in a polygon, define the
unitary operator for the first tessellation of the one-dimensional STAGGERED model. Amplitudes b1 to
bN define the unitary operator for the second tessellation. See examples for more details.

Two-dimensional staggered walks:

BEGINSTATE · · · ENDSTATE

The initial state has the form |ψ〉 =
∑

xy αxy|x, y〉. Each term in the sum produces a line with the
syntax

re(αxy) im(αxy) x y

where αxy ∈ C are the amplitudes and |x, y〉 is a position state.

POLYGONS <Nx> <Ny> defines the dimensions of the polygons of both tessellations. <Nx> and <Ny> must be
a positive integers.

DISPLACEMENT <Nx> <Ny> defines the displacement of the second tessellation. <Nx> moves toward increasing
x and <Ny> moves toward increasing y. <Nx> and <Ny> must be a non-negative integers.
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BEGINTESSELLATION
<(a11) =(a11) . . . <(a1Ny) =(a1Ny) . . . <(aNxNy) =(aNxNy)

<(b11) =(b11) . . . <(b1Ny) =(b1Ny) . . . <(bNxNy) =(bNxNy)

ENDTESSELLATION

For TORUS or LATTICE, parameters a11 to aNxNy define the unitary operator for the first tessellation
of the two-dimensional STAGGERED model. Parameters b11 to bNxNy define the unitary operator for the
second tessellation.

4.3 Commands only for CUSTOM

INITIALSTATE <filename> expects the file name describing the initial condition. The initial condition
must be in the computational basis (|ψ〉 =

∑
i αi|i〉) and the i-th line of <filename> must have the

i-th amplitude in the format

re(αi) im(αi)

UNITARY <filename1> <filename2> ... expects the file names describing unitary operators. The opera-
tors must be stored in the sparse form. If

U =
∑
i,j

ui,j |i〉〈j|,

is a unitary operator, the format of each line of <filename> is

i j re(ui,j) im(ui,j)

Entries that are zero must no be stored and it does not matter the order of the lines. CUSTOM is
used for generating the state at step t when the inital state and unitaries U1, U2, and so on are given.
That is, Hiperwalk calculates (U2U1)

t|ψ0〉.

5. EXAMPLES

In this section we show two examples using the coined and staggered quantum walk models. Consider
two input samples. The left (right) input is an example for the coined (staggered) model.

1 WALK DTQW 1 WALK STAGGERED

2 DIRECTORY DIR1 2 DIRECTORY DIR2

3 STEPS 100 3 STEPS 100

4 GRAPH LINE 4 GRAPH CYCLE 240

5 5

6 BEGINSTATE 6 BEGINSTATE

7 0.70710678 0 0 0 7 0.70710678 0 120

8 0 -0.70710678 1 0 8 0 0.70710678 121

9 ENDSTATE 9 END STATE

10 10

11 BEGINCOIN 11 POLYGONS 2

12 HADAMARD 2 12 DISPLACEMENT 1

13 ENDCOIN 13

14 14 BEGINTESSELLATION

15 PLOTS TRUE 15 0.92387953 0 0.3826834 0

16 16 0.50000000 0 0.8660254 0

17 17 ENDTESSELLATION

18 18

19 19 PLOTS TRUE
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The left column shows an input sample using the coined quantum walk on a line. The initial condition is
|ψ〉 = 1√

2
(|0〉−i|1〉)|0〉. The coin is the 2×2 Hadamard matrix. The right column shows an input sample using

the staggered quantum walk on a cyle with 240 vertices. The polygons are of 2×1 vertices. The displacement
of the second tessellation is of one vertex. The tessellation is set with amplitudes 0.92387953 for the first
vertex and 0.3826834 for the second vertex, while, the second tessellation has amplitudes 0.50000000 and
0.8660254 for the first and second vertices, respectively, and the initial condition is |ψ〉 = 1√

2
(|120〉+ i|121〉).
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Figure 1: Probability distributions after 100 steps for the coined model (left) and after 50 step for the
staggered model (right).

Fig. 1 shows the final probability distribution for each case generated by Hiperwalk. The simulator also
produces a graph of the standard deviation. Fig. 2 shows the standard deviation as a function of the number
of steps for left-side input (coined model). This figure uses the gnuplot fitting to find the scaling parameters
of the standard deviation. From the result, one can easily verify that the standard deviation increases linearly
with the number of time steps, as expected.
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Figure 2: Standard deviation for coined model experiment.

6. CONCLUSIONS

We have briefly described a new simulator called Hiperwalk (high-performance quantum-walk simulator),
that can be used to generate the dynamics of the main quantum walk models described in Literature. Up
to now, only the discrete-time coined and staggered quantum walk models have been implemented. The
continuous-time and Szegedy’s quantum walk models are currently being implemented.

This new simulator has two major advantages: 1) it has an user-friendly input, and 2) it is able to
use hybrid HPC architectures, which include Xeon processors, Xeon Phi, Tesla cards, graphic cards, intel
multi-cores, and others. The load is automatically balanced among the available processors and, to use the
simulator, no knowledge of parallel programming is required.
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